enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Row and column spaces - Wikipedia

    en.wikipedia.org/wiki/Row_and_column_spaces

    The nullity of a matrix is the dimension of the null space, and is equal to the number of columns in the reduced row echelon form that do not have pivots. [7] The rank and nullity of a matrix A with n columns are related by the equation: ⁡ + ⁡ =. This is known as the rank–nullity theorem.

  3. Rank–nullity theorem - Wikipedia

    en.wikipedia.org/wiki/Ranknullity_theorem

    Rank–nullity theorem. The rank–nullity theorem is a theorem in linear algebra, which asserts: the number of columns of a matrix M is the sum of the rank of M and the nullity of M; and; the dimension of the domain of a linear transformation f is the sum of the rank of f (the dimension of the image of f) and the nullity of f (the dimension of ...

  4. Rank (linear algebra) - Wikipedia

    en.wikipedia.org/wiki/Rank_(linear_algebra)

    A matrix is said to have full rank if its rank equals the largest possible for a matrix of the same dimensions, which is the lesser of the number of rows and columns. A matrix is said to be rank-deficient if it does not have full rank. The rank deficiency of a matrix is the difference between the lesser of the number of rows and columns, and ...

  5. Quotient space (linear algebra) - Wikipedia

    en.wikipedia.org/wiki/Quotient_space_(linear...

    The first isomorphism theorem for vector spaces says that the quotient space V/ker(T) is isomorphic to the image of V in W. An immediate corollary, for finite-dimensional spaces, is the rank–nullity theorem: the dimension of V is equal to the dimension of the kernel (the nullity of T) plus the dimension of the image (the rank of T).

  6. Jordan normal form - Wikipedia

    en.wikipedia.org/wiki/Jordan_normal_form

    In general, a square complex matrix A is similar to a block diagonal matrix = [] where each block J i is a square matrix of the form = []. So there exists an invertible matrix P such that P −1 AP = J is such that the only non-zero entries of J are on the diagonal and the superdiagonal.

  7. Nilpotent matrix - Wikipedia

    en.wikipedia.org/wiki/Nilpotent_matrix

    Consider the linear space of polynomials of a bounded degree. The derivative operator is a linear map. We know that applying the derivative to a polynomial decreases its degree by one, so when applying it iteratively, we will eventually obtain zero. Therefore, on such a space, the derivative is representable by a nilpotent matrix.

  8. Betti number - Wikipedia

    en.wikipedia.org/wiki/Betti_number

    The same definition applies to any topological space which has a finitely generated homology. Given a topological space which has a finitely generated homology, the Poincaré polynomial is defined as the generating function of its Betti numbers, via the polynomial where the coefficient of x n {\displaystyle x^{n}} is b n {\displaystyle b_{n}} .

  9. Nullity - Wikipedia

    en.wikipedia.org/wiki/Nullity

    Nullity (linear algebra), the dimension of the kernel of a mathematical operator or null space of a matrix; Nullity (graph theory), the nullity of the adjacency matrix of a graph; Nullity, the difference between the size and rank of a subset in a matroid; Nullity, a concept in transreal arithmetic denoted by Φ, or similarly in wheel theory ...