Search results
Results from the WOW.Com Content Network
Continued fractions can also be applied to problems in number theory, and are especially useful in the study of Diophantine equations. In the late eighteenth century Lagrange used continued fractions to construct the general solution of Pell's equation, thus answering a question that had fascinated mathematicians for more than a thousand years. [9]
Quadratic formula. The roots of the quadratic function y = 1 2 x2 − 3x + 5 2 are the places where the graph intersects the x -axis, the values x = 1 and x = 5. They can be found via the quadratic formula. In elementary algebra, the quadratic formula is a closed-form expression describing the solutions of a quadratic equation.
Two-dimensional plot (red curve) of the algebraic equation . Elementary algebra, also known as college algebra, [1] encompasses the basic concepts of algebra. It is often contrasted with arithmetic: arithmetic deals with specified numbers, [2] whilst algebra introduces variables (quantities without fixed values). [3]
Solving quadratic equations with continued fractions. In mathematics, a quadratic equation is a polynomial equation of the second degree. The general form is. where a ≠ 0. The quadratic equation on a number can be solved using the well-known quadratic formula, which can be derived by completing the square. That formula always gives the roots ...
Rational root theorem. In algebra, the rational root theorem (or rational root test, rational zero theorem, rational zero test or p/q theorem) states a constraint on rational solutions of a polynomial equation with integer coefficients and . Solutions of the equation are also called roots or zeros of the polynomial on the left side.
Solution in radicals. A solution in radicals or algebraic solution is a closed-form expression, and more specifically a closed-form algebraic expression, that is the solution of a polynomial equation, and relies only on addition, subtraction, multiplication, division, raising to integer powers, and the extraction of n th roots (square roots ...
The concept was discovered independently in 1702 by both Johann Bernoulli and Gottfried Leibniz. [3] In symbols, the partial fraction decomposition of a rational fraction of the form where f and g are polynomials, is the expression of the rational fraction as. {\displaystyle {\frac {f (x)} {g (x)}}=p (x)+\sum _ {j} {\frac {f_ {j} (x)} {g_ {j ...
Square root. Notation for the (principal) square root of x. For example, √ 25 = 5, since 25 = 5 ⋅ 5, or 52 (5 squared). In mathematics, a square root of a number x is a number y such that ; in other words, a number y whose square (the result of multiplying the number by itself, or ) is x. [1] For example, 4 and −4 are square roots of 16 ...