Search results
Results from the WOW.Com Content Network
Python sets are very much like mathematical sets, and support operations like set intersection and union. Python also features a frozenset class for immutable sets, see Collection types. Dictionaries (class dict) are mutable mappings tying keys and corresponding values. Python has special syntax to create dictionaries ({key: value})
The CBOW can be viewed as a ‘fill in the blank’ task, where the word embedding represents the way the word influences the relative probabilities of other words in the context window. Words which are semantically similar should influence these probabilities in similar ways, because semantically similar words should be used in similar contexts.
When being inserted to a dictionary, the value object receives a retain message to increase its reference count. The value object will receive the release message when it will be deleted from the dictionary (either explicitly or by adding to the dictionary a different object with the same key).
Lookup, find, or get find the value (if any) that is bound to a given key. The argument to this operation is the key, and the value is returned from the operation. If no value is found, some lookup functions raise an exception, while others return a default value (such as zero, null, or a specific value passed to the constructor).
In natural language processing, a word embedding is a representation of a word. The embedding is used in text analysis.Typically, the representation is a real-valued vector that encodes the meaning of the word in such a way that the words that are closer in the vector space are expected to be similar in meaning. [1]
The bag-of-words model (BoW) is a model of text which uses a representation of text that is based on an unordered collection (a "bag") of words. It is used in natural language processing and information retrieval (IR). It disregards word order (and thus most of syntax or grammar) but captures multiplicity.
It is also possible to delete a key from an association list, by scanning the list to find each occurrence of the key and splicing the nodes containing the key out of the list. [1] The scan should continue to the end of the list, even when the key is found, in case the same key may have been inserted multiple times.
In computer vision, the bag-of-words model (BoW model) sometimes called bag-of-visual-words model [1] [2] can be applied to image classification or retrieval, by treating image features as words. In document classification , a bag of words is a sparse vector of occurrence counts of words; that is, a sparse histogram over the vocabulary.