enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Riemann–Roch theorem for smooth manifolds - Wikipedia

    en.wikipedia.org/wiki/Riemann–Roch_theorem_for...

    Let X and Y be oriented smooth closed manifolds, and f: X → Y a continuous map. Let v f =f * (TY) − TX in the K-group K(X). If dim(X) ≡ dim(Y) mod 2, then (()) = (() / ^ ()),where ch is the Chern character, d(v f) an element of the integral cohomology group H 2 (Y, Z) satisfying d(v f) ≡ f * w 2 (TY)-w 2 (TX) mod 2, f K* the Gysin homomorphism for K-theory, and f H* the Gysin ...

  3. Generalized Stokes theorem - Wikipedia

    en.wikipedia.org/wiki/Generalized_Stokes_theorem

    Let M be a smooth manifold. A (smooth) singular k-simplex in M is defined as a smooth map from the standard simplex in R k to M. The group C k (M, Z) of singular k-chains on M is defined to be the free abelian group on the set of singular k-simplices in M. These groups, together with the boundary map, ∂, define a chain complex.

  4. Manning formula - Wikipedia

    en.wikipedia.org/wiki/Manning_formula

    Note: the Strickler coefficient is the reciprocal of Manning coefficient: Ks =1/ n, having dimension of L 1/3 /T and units of m 1/3 /s; it varies from 20 m 1/3 /s (rough stone and rough surface) to 80 m 1/3 /s (smooth concrete and cast iron). The discharge formula, Q = A V, can be used to rewrite Gauckler–Manning's equation by substitution for V.

  5. Flow distribution in manifolds - Wikipedia

    en.wikipedia.org/wiki/Flow_distribution_in_manifolds

    Eq.2b is a fundamental equation for most of discrete models. The equation can be solved by recurrence and iteration method for a manifold. It is clear that Eq.2a is limiting case of Eq.2b when ∆X → 0. Eq.2a is simplified to Eq.1 Bernoulli equation without the potential energy term when β=1 whilst Eq.2 is simplified to Kee's model [6] when β=0

  6. Riemannian manifold - Wikipedia

    en.wikipedia.org/wiki/Riemannian_manifold

    Theorem: Every smooth manifold admits a (non-canonical) Riemannian metric. [13] This is a fundamental result. Although much of the basic theory of Riemannian metrics can be developed using only that a smooth manifold is a locally Euclidean topological space, for this result it is necessary to use that smooth manifolds are Hausdorff and paracompact.

  7. Stochastic analysis on manifolds - Wikipedia

    en.wikipedia.org/wiki/Stochastic_analysis_on...

    In mathematics, stochastic analysis on manifolds or stochastic differential geometry is the study of stochastic analysis over smooth manifolds. It is therefore a synthesis of stochastic analysis (the extension of calculus to stochastic processes ) and of differential geometry .

  8. Fundamental vector field - Wikipedia

    en.wikipedia.org/wiki/Fundamental_vector_field

    Important to applications in mathematics and physics [1] is the notion of a flow on a manifold. In particular, if is a smooth manifold and is a smooth vector field, one is interested in finding integral curves to .

  9. Contact geometry - Wikipedia

    en.wikipedia.org/wiki/Contact_geometry

    Conversely, given any contact manifold M, the product M×R has a natural structure of a symplectic manifold. If α is a contact form on M, then ω = d(e t α) is a symplectic form on M×R, where t denotes the variable in the R-direction. This new manifold is called the symplectization (sometimes symplectification in the literature) of the ...