Search results
Results from the WOW.Com Content Network
The lateral surface area of a right circular cone is = where is the radius of the circle at the bottom of the cone and is the slant height of the cone. [4] The surface area of the bottom circle of a cone is the same as for any circle, . Thus, the total surface area of a right circular cone can be expressed as each of the following:
The basic quantities describing a sphere (meaning a 2-sphere, a 2-dimensional surface inside 3-dimensional space) will be denoted by the following variables r {\displaystyle r} is the radius, C = 2 π r {\displaystyle C=2\pi r} is the circumference (the length of any one of its great circles ),
A sphere of radius r has surface area 4πr 2.. The surface area (symbol A) of a solid object is a measure of the total area that the surface of the object occupies. [1] The mathematical definition of surface area in the presence of curved surfaces is considerably more involved than the definition of arc length of one-dimensional curves, or of the surface area for polyhedra (i.e., objects with ...
the alternative formula is therefore: = (+ +). Heron of Alexandria is noted for deriving this formula, and with it, encountering the imaginary unit: the square root of negative one. [4] In particular: The volume of a circular cone frustum is:
A conic is the curve obtained as the intersection of a plane, called the cutting plane, with the surface of a double cone (a cone with two nappes).It is usually assumed that the cone is a right circular cone for the purpose of easy description, but this is not required; any double cone with some circular cross-section will suffice.
The external surface area A of the cap equals r2 only if solid angle of the cone is exactly 1 steradian. Hence, in this figure θ = A /2 and r = 1 . The solid angle of a cone with its apex at the apex of the solid angle, and with apex angle 2 θ , is the area of a spherical cap on a unit sphere
The formula for the surface area of a sphere is more difficult to derive: because a sphere has nonzero Gaussian curvature, it cannot be flattened out. The formula for the surface area of a sphere was first obtained by Archimedes in his work On the Sphere and Cylinder. The formula is: [6] A = 4πr 2 (sphere), where r is the radius of the sphere.
To find the surface area of the sphere, Archimedes argued that just as the area of the circle could be thought of as infinitely many infinitesimal right triangles going around the circumference (see Measurement of the Circle), the volume of the sphere could be thought of as divided into many cones with height equal to the radius and base on the ...