Search results
Results from the WOW.Com Content Network
This is a list of mathematical logic topics. For traditional syllogistic logic, see the list of topics in logic . See also the list of computability and complexity topics for more theory of algorithms .
Hilbert's tenth problem is the tenth on the list of mathematical problems that the German mathematician David Hilbert posed in 1900. It is the challenge to provide a general algorithm that, for any given Diophantine equation (a polynomial equation with integer coefficients and a finite number of unknowns), can decide whether the equation has a solution with all unknowns taking integer values.
There is an unlimited amount of axiomatisations of predicate logic, since for any logic there is freedom in choosing axioms and rules that characterise that logic. We describe here a Hilbert system with nine axioms and just the rule modus ponens, which we call the one-rule axiomatisation and which describes classical equational logic.
Mathematical logic, also called 'logistic', 'symbolic logic', the 'algebra of logic', and, more recently, simply 'formal logic', is the set of logical theories elaborated in the course of the nineteenth century with the aid of an artificial notation and a rigorously deductive method. [5]
Logic studies valid forms of inference like modus ponens. Logic is the study of correct reasoning. It includes both formal and informal logic. Formal logic is the study of deductively valid inferences or logical truths. It examines how conclusions follow from premises based on the structure of arguments alone, independent of their topic and ...
FOL is now a core formalism of mathematical logic, and is presupposed by contemporary treatments of Peano arithmetic and nearly all treatments of axiomatic set theory. The 1928 edition included a clear statement of the Entscheidungsproblem ( decision problem ) for FOL, and also asked whether that logic was complete (i.e., whether all semantic ...
Categorical logic is the branch of mathematics in which tools and concepts from category theory are applied to the study of mathematical logic. It is also notable for its connections to theoretical computer science. [1] In broad terms, categorical logic represents both syntax and semantics by a category, and an interpretation by a functor.
In logic, a truth function [1] is a function that accepts truth values as input and produces a unique truth value as output. In other words: the input and output of a truth function are all truth values; a truth function will always output exactly one truth value, and inputting the same truth value(s) will always output the same truth value.