enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Material properties (thermodynamics) - Wikipedia

    en.wikipedia.org/wiki/Material_properties...

    The thermodynamic properties of materials are intensive thermodynamic parameters which are specific to a given material. Each is directly related to a second order differential of a thermodynamic potential. Examples for a simple 1-component system are: Compressibility (or its inverse, the bulk modulus) Isothermal compressibility

  3. Intensive and extensive properties - Wikipedia

    en.wikipedia.org/wiki/Intensive_and_extensive...

    The distinction between intensive and extensive properties has some theoretical uses. For example, in thermodynamics, the state of a simple compressible system is completely specified by two independent, intensive properties, along with one extensive property, such as mass. Other intensive properties are derived from those two intensive variables.

  4. Laws of thermodynamics - Wikipedia

    en.wikipedia.org/wiki/Laws_of_thermodynamics

    [1] [2] [3] A more fundamental statement was later labelled as the zeroth law after the first three laws had been established. The zeroth law of thermodynamics defines thermal equilibrium and forms a basis for the definition of temperature: if two systems are each in thermal equilibrium with a third system, then they are in thermal equilibrium ...

  5. Table of thermodynamic equations - Wikipedia

    en.wikipedia.org/wiki/Table_of_thermodynamic...

    Quantity (common name/s) (Common) symbol/s Defining equation SI unit Dimension Temperature gradient: No standard symbol K⋅m −1: ΘL −1: Thermal conduction rate, thermal current, thermal/heat flux, thermal power transfer

  6. List of thermodynamic properties - Wikipedia

    en.wikipedia.org/wiki/List_of_thermodynamic...

    Systems do not contain work, but can perform work, and likewise, in formal thermodynamics, systems do not contain heat, but can transfer heat. Informally, however, a difference in the energy of a system that occurs solely because of a difference in its temperature is commonly called heat , and the energy that flows across a boundary as a result ...

  7. Thermodynamic equations - Wikipedia

    en.wikipedia.org/wiki/Thermodynamic_equations

    The first and second law of thermodynamics are the most fundamental equations of thermodynamics. They may be combined into what is known as fundamental thermodynamic relation which describes all of the changes of thermodynamic state functions of a system of uniform temperature and pressure.

  8. An Inquiry Concerning the Source of the Heat Which Is Excited ...

    en.wikipedia.org/wiki/An_Inquiry_Concerning_the...

    Rumford confirmed that no physical change had taken place in the material of the cannon by comparing the specific heats of the material machined away and that remaining were the same. Rumford also argued that the seemingly indefinite generation of heat was incompatible with the caloric theory.

  9. Thermal equilibrium - Wikipedia

    en.wikipedia.org/wiki/Thermal_equilibrium

    For example, it is possible that a body might reach internal thermal equilibrium but not be in internal chemical equilibrium; glass is an example. [ 2 ] One may imagine an isolated system, initially not in its own state of internal thermal equilibrium.