Search results
Results from the WOW.Com Content Network
The distance between any point of the circle and the centre is called the radius. The length of a line segment connecting two points on the circle and passing through the centre is called the diameter. A circle bounds a region of the plane called a disc. The circle has been known since before the beginning of recorded history.
Angle AOB is a central angle. A central angle is an angle whose apex (vertex) is the center O of a circle and whose legs (sides) are radii intersecting the circle in two distinct points A and B. Central angles are subtended by an arc between those two points, and the arc length is the central angle of a circle of radius one (measured in radians). [1]
the nine-point centre, the centre of the circle that passes through nine key points of the triangle. For an equilateral triangle, these are the same point, which lies at the intersection of the three axes of symmetry of the triangle, one third of the distance from its base to its apex.
Radius of curvature and center of curvature. In differential geometry, the radius of curvature, R, is the reciprocal of the curvature. For a curve, it equals the radius of the circular arc which best approximates the curve at that point. For surfaces, the radius of curvature is the radius of a circle that best fits a normal section or ...
It is relatively straightforward to construct a line t tangent to a circle at a point T on the circumference of the circle: A line a is drawn from O, the center of the circle, through the radial point T; The line t is the perpendicular line to a. Construction of a tangent to a given circle (black) from a given exterior point (P).
Consider a circle P with center O and a point A which may lie inside or outside the circle P. Take the intersection point C of the ray OA with the circle P. Connect the point C with an arbitrary point B on the circle P (different from C and from the point on P antipodal to C) Let h be the reflection of ray BA in line BC. Then h cuts ray OC in a ...
Thus a circle in the Euclidean plane was defined as the locus of a point that is at a given distance of a fixed point, the center of the circle. In modern mathematics, similar concepts are more frequently reformulated by describing shapes as sets; for instance, one says that the circle is the set of points that are at a given distance from the ...
A polygon whose vertices are concyclic is called a cyclic polygon, and the circle is called its circumscribing circle or circumcircle. All concyclic points are equidistant from the center of the circle. Three points in the plane that do not all fall on a straight line are concyclic, so every triangle is a cyclic polygon, with a well-defined ...