Search results
Results from the WOW.Com Content Network
The Euclidean algorithm is based on the principle that the greatest common divisor of two numbers does not change if the larger number is replaced by its difference with the smaller number. For example, 21 is the GCD of 252 and 105 (as 252 = 21 × 12 and 105 = 21 × 5), and the same number 21 is also the GCD of 105 and 252 − 105 = 147. Since ...
In computing, the modulo operation returns the remainder or signed remainder of a division, after one number is divided by another, called the modulus of the operation.. Given two positive numbers a and n, a modulo n (often abbreviated as a mod n) is the remainder of the Euclidean division of a by n, where a is the dividend and n is the divisor.
Long division is the standard algorithm used for pen-and-paper division of multi-digit numbers expressed in decimal notation. It shifts gradually from the left to the right end of the dividend, subtracting the largest possible multiple of the divisor (at the digit level) at each stage; the multiples then become the digits of the quotient, and the final difference is then the remainder.
A second difference lies in the bound on the size of the Bézout coefficients provided by the extended Euclidean algorithm, which is more accurate in the polynomial case, leading to the following theorem. If a and b are two nonzero polynomials, then the extended Euclidean algorithm produces the unique pair of polynomials (s, t) such that
P, and so on, but 8!P requires inverting 599 (mod 455839). The Euclidean algorithm gives that 455839 is divisible by 599, and we have found a factorization 455839 = 599·761. The reason that this worked is that the curve (mod 599) has 640 = 2 7 ·5 points, while (mod 761) it has 777 = 3·7·37 points.
For example, for d = −19, −43, −67, −163, the ring of integers of () is a PID which is not Euclidean, but the cases d = −1, −2, −3, −7, −11 are Euclidean. [ 11 ] However, in many finite extensions of Q with trivial class group , the ring of integers is Euclidean (not necessarily with respect to the absolute value of the field ...
For example, to multiply 7 and 15 modulo 17 in Montgomery form, again with R = 100, compute the product of 3 and 4 to get 12 as above. The extended Euclidean algorithm implies that 8⋅100 − 47⋅17 = 1, so R′ = 8. Multiply 12 by 8 to get 96 and reduce modulo 17 to get 11. This is the Montgomery form of 3, as expected.
Randomized algorithms that solve the problem in linear time are known, in Euclidean spaces whose dimension is treated as a constant for the purposes of asymptotic analysis. [ 2 ] [ 3 ] [ 4 ] This is significantly faster than the O ( n 2 ) {\displaystyle O(n^{2})} time (expressed here in big O notation ) that would be obtained by a naive ...