enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Regular icosahedron - Wikipedia

    en.wikipedia.org/wiki/Regular_icosahedron

    An icosahedron can be inscribed in a dodecahedron by placing its vertices at the face centers of the dodecahedron, and vice versa. [17] An icosahedron can be inscribed in an octahedron by placing its 12 vertices on the 12 edges of the octahedron such that they divide each edge into its two golden sections. Because the golden sections are ...

  3. Icosahedron - Wikipedia

    en.wikipedia.org/wiki/Icosahedron

    A regular icosahedron can be distorted or marked up as a lower pyritohedral symmetry, [2] [3] and is called a snub octahedron, snub tetratetrahedron, snub tetrahedron, and pseudo-icosahedron. [4] This can be seen as an alternated truncated octahedron .

  4. Rhombicosidodecahedron - Wikipedia

    en.wikipedia.org/wiki/Rhombicosidodecahedron

    In the mathematical field of graph theory, a rhombicosidodecahedral graph is the graph of vertices and edges of the rhombicosidodecahedron, one of the Archimedean solids. It has 60 vertices and 120 edges, and is a quartic graph Archimedean graph. [5] Square centered Schlegel diagram

  5. Truncated icosahedron - Wikipedia

    en.wikipedia.org/wiki/Truncated_icosahedron

    The truncated icosahedron is an Archimedean solid, meaning it is a highly symmetric and semi-regular polyhedron, and two or more different regular polygonal faces meet in a vertex. [5] It has the same symmetry as the regular icosahedron, the icosahedral symmetry, and it also has the property of vertex-transitivity.

  6. Final stellation of the icosahedron - Wikipedia

    en.wikipedia.org/wiki/Final_stellation_of_the...

    The 92 vertices lie on the surfaces of three concentric spheres. The innermost group of 20 vertices form the vertices of a regular dodecahedron; the next layer of 12 form the vertices of a regular icosahedron; and the outer layer of 60 form the vertices of a nonuniform truncated icosahedron. The radii of these spheres are in the ratio [11]

  7. 600-cell - Wikipedia

    en.wikipedia.org/wiki/600-cell

    Departing from an arbitrary vertex V one has at 36° and 144° the 12 vertices of an icosahedron, [p] at 60° and 120° the 20 vertices of a dodecahedron, at 72° and 108° the 12 vertices of a larger icosahedron, at 90° the 30 vertices of an icosidodecahedron, and finally at 180° the antipodal vertex of V. [14] [15] [16] These can be seen in ...

  8. Pentakis dodecahedron - Wikipedia

    en.wikipedia.org/wiki/Pentakis_dodecahedron

    Let be the golden ratio.The 12 points given by (,,) and cyclic permutations of these coordinates are the vertices of a regular icosahedron.Its dual regular dodecahedron, whose edges intersect those of the icosahedron at right angles, has as vertices the points (,,) together with the points (, /,) and cyclic permutations of these coordinates.

  9. Regular dodecahedron - Wikipedia

    en.wikipedia.org/wiki/Regular_dodecahedron

    The regular icosahedron can be constructed by intersecting three golden rectangles perpendicularly, arranged in two-by-two orthogonal, and connecting each of the golden rectangle's vertices with a segment line. There are 12 regular icosahedron vertices, considered as the center of 12 regular dodecahedron faces. [13]