Search results
Results from the WOW.Com Content Network
The term echolocation was coined by 1944 by the American zoologist Donald Griffin, who, with Robert Galambos, first demonstrated the phenomenon in bats. [1] [2] As Griffin described in his book, [3] the 18th century Italian scientist Lazzaro Spallanzani had, by means of a series of elaborate experiments, concluded that when bats fly at night, they rely on some sense besides vision, but he did ...
Human echolocation is the ability of humans to detect objects in their environment by sensing echoes from those objects, by actively creating sounds: for example, by tapping their canes, lightly stomping their foot, snapping their fingers, or making clicking noises with their mouths.
These types of echolocation pulses afford the bat the ability to classify, detect flutter (e.g. the fluttering wings of insects), and determine velocity information about the target. [5] Both CF and CF-FM bats use the Doppler shift compensation mechanism in order to maximize the efficiency of their echolocation behavior.
Animal echolocation, non-human animals emitting sound waves and listening to the echo in order to locate objects or navigate. Human echolocation , the use of sound by people to navigate. Sonar ( so und n avigation a nd r anging), the use of sound on water or underwater, to navigate or to locate other watercraft, usually by submarines.
Examples include echolocation of bats and dolphins and insect antennae. Using self-generated energy allows more control over signal intensity, direction, timing and spectral characteristics. By contrast, passive sensory systems involve activation by ambient energy (that is, energy that is preexisting in the environment, rather than generated by ...
Swedish soldiers operating an acoustic locator in 1940. Acoustic location is a method of determining the position of an object or sound source by using sound waves. Location can take place in gases (such as the atmosphere), liquids (such as water), and in solids (such as in the earth).
Echolocation involves emitting sounds and interpreting the vibrations that return from objects. [71] In bats, echolocation also serves the purpose of mapping their environment. They are capable of recognizing a space they have been in before without any visible light because they can memorize patterns in the feedback they get from echolocation ...
Donald Griffin (1915–2003) studied echolocation in bats, demonstrating that it was possible and that bats used this mechanism to detect and track prey, and to "see" and thus navigate through the world around them. [6] Ronald Lockley (1903–2000), among many studies of birds in over fifty books, pioneered the science of bird migration.