enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Color vision - Wikipedia

    en.wikipedia.org/wiki/Color_vision

    Thus color information is mostly taken in at the fovea. Humans have poor color perception in their peripheral vision, and much of the color we see in our periphery may be filled in by what our brains expect to be there on the basis of context and memories. However, our accuracy of color perception in the periphery increases with the size of ...

  3. Visual perception - Wikipedia

    en.wikipedia.org/wiki/Visual_perception

    Isaac Newton (1642–1726/27) was the first to discover through experimentation, by isolating individual colors of the spectrum of light passing through a prism, that the visually perceived color of objects appeared due to the character of light the objects reflected, and that these divided colors could not be changed into any other color ...

  4. Color - Wikipedia

    en.wikipedia.org/wiki/Color

    The gamut of the human color vision is bounded by optimal colors. They are the most chromatic colors that humans are able to see. The emission or reflectance spectrum of a color is the amount of light of each wavelength that it emits or reflects, in proportion to a given maximum, which has the value of 1 (100%). If the emission or reflectance ...

  5. Evolution of color vision - Wikipedia

    en.wikipedia.org/wiki/Evolution_of_color_vision

    Today, most mammals possess dichromatic vision, corresponding to protanopia red–green color blindness. They can thus see violet, blue, green and yellow light, but cannot see ultraviolet or deep red light. [5] [6] This was probably a feature of the first mammalian ancestors, which were likely small, nocturnal, and burrowing.

  6. Cone cell - Wikipedia

    en.wikipedia.org/wiki/Cone_cell

    Because humans usually have three kinds of cones with different photopsins, which have different response curves and thus respond to variation in color in different ways, humans have trichromatic vision. Being color blind can change this, and there have been some verified reports of people with four types of cones, giving them tetrachromatic ...

  7. Chromatic adaptation - Wikipedia

    en.wikipedia.org/wiki/Chromatic_adaptation

    Chromatic adaptation is the human visual system’s ability to adjust to changes in illumination in order to preserve the appearance of object colors. It is responsible for the stable appearance of object colors despite the wide variation of light which might be reflected from an object and observed by our eyes.

  8. Contrast (vision) - Wikipedia

    en.wikipedia.org/wiki/Contrast_(vision)

    Contrast is the difference in luminance or color that makes an object (or its representation in an image or display) visible against a background of different luminance or color. [1] The human visual system is more sensitive to contrast than to absolute luminance; thus, we can perceive the world similarly despite significant changes in ...

  9. Chromostereopsis - Wikipedia

    en.wikipedia.org/wiki/Chromostereopsis

    Blue–red contrast demonstrating depth perception effects 3 Layers of depths "Rivers, Valleys & Mountains". Chromostereopsis is a visual illusion whereby the impression of depth is conveyed in two-dimensional color images, usually of red–blue or red–green colors, but can also be perceived with red–grey or blue–grey images.