enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Ptolemy's theorem - Wikipedia

    en.wikipedia.org/wiki/Ptolemy's_theorem

    Ptolemy's Theorem yields as a corollary a pretty theorem [2] regarding an equilateral triangle inscribed in a circle. Given An equilateral triangle inscribed on a circle and a point on the circle. The distance from the point to the most distant vertex of the triangle is the sum of the distances from the point to the two nearer vertices.

  3. Ptolemy's inequality - Wikipedia

    en.wikipedia.org/wiki/Ptolemy's_inequality

    For four points in order around a circle, Ptolemy's inequality becomes an equality, known as Ptolemy's theorem: ¯ ¯ + ¯ ¯ = ¯ ¯. In the inversion-based proof of Ptolemy's inequality, transforming four co-circular points by an inversion centered at one of them causes the other three to become collinear, so the triangle equality for these three points (from which Ptolemy's inequality may ...

  4. File:Animated visual proof of Ptolemy's theorem, based on ...

    en.wikipedia.org/wiki/File:Animated_visual_proof...

    English: Animated visual proof of Ptolemy's theorem, based on W. Derrick, J. Herstein (2012) Proof Without Words: Ptolemy's Theorem, The College Mathematics Journal, v 43, n 5, p 386 Date 22 May 2022

  5. Law of cosines - Wikipedia

    en.wikipedia.org/wiki/Law_of_cosines

    Proof of law of cosines using Ptolemy's theorem. Referring to the diagram, triangle ABC with sides AB = c, BC = a and AC = b is drawn inside its circumcircle as shown. Triangle ABD is constructed congruent to triangle ABC with AD = BC and BD = AC. Perpendiculars from D and C meet base AB at E and F respectively. Then:

  6. Casey's theorem - Wikipedia

    en.wikipedia.org/wiki/Casey's_theorem

    In mathematics, Casey's theorem, also known as the generalized Ptolemy's theorem, is a theorem in Euclidean geometry named after the Irish mathematician John Casey. Formulation of the theorem [ edit ]

  7. Parallel postulate - Wikipedia

    en.wikipedia.org/wiki/Parallel_postulate

    Proclus (410–485) wrote a commentary on The Elements where he comments on attempted proofs to deduce the fifth postulate from the other four; in particular, he notes that Ptolemy had produced a false 'proof'. Proclus then goes on to give a false proof of his own. However, he did give a postulate which is equivalent to the fifth postulate.

  8. Quadrilateral - Wikipedia

    en.wikipedia.org/wiki/Quadrilateral

    Euler also generalized Ptolemy's theorem, which is an equality in a cyclic quadrilateral, into an inequality for a convex quadrilateral. It states that + where there is equality if and only if the quadrilateral is cyclic. [24]: p.128–129 This is often called Ptolemy's inequality.

  9. Brahmagupta's formula - Wikipedia

    en.wikipedia.org/wiki/Brahmagupta's_formula

    The relationship between the general and extended form of Brahmagupta's formula is similar to how the law of cosines extends the Pythagorean theorem. Increasingly complicated closed-form formulas exist for the area of general polygons on circles, as described by Maley et al. [3]