Search results
Results from the WOW.Com Content Network
In control theory, overshoot refers to an output exceeding its final, steady-state value. [2] For a step input, the percentage overshoot (PO) is the maximum value minus the step value divided by the step value. In the case of the unit step, the overshoot is just the maximum value of the step
In control theory, overshoot refers to an output exceeding its final, steady-state value. [13] For a step input, the percentage overshoot (PO) is the maximum value minus the step value divided by the step value. In the case of the unit step, the overshoot is just the maximum value of the step response minus one.
How overshoot may be controlled by appropriate parameter choices is discussed next. Using the equations above, the amount of overshoot can be found by differentiating the step response and finding its maximum value. The result for maximum step response S max is: [3]
The process of determining the equations that govern the model's dynamics is called system identification. This can be done off-line: for example, executing a series of measures from which to calculate an approximated mathematical model, typically its transfer function or matrix. Such identification from the output, however, cannot take account ...
Tay, Mareels and Moore (1998) defined settling time as "the time required for the response curve to reach and stay within a range of certain percentage (usually 5% or 2%) of the final value." [ 2 ] Mathematical detail
From February 2011 to December 2012, if you bought shares in companies when Rodger A. Lawson joined the board, and sold them when he left, you would have a 29.2 percent return on your investment, compared to a 7.7 percent return from the S&P 500.
Siegel derived it from the Riemann–Siegel integral formula, an expression for the zeta function involving contour integrals. It is often used to compute values of the Riemann–Siegel formula, sometimes in combination with the Odlyzko–Schönhage algorithm which speeds it up considerably.
From April 2012 to December 2012, if you bought shares in companies when Janice M. Babiak joined the board, and sold them when she left, you would have a 13.7 percent return on your investment, compared to a 3.2 percent return from the S&P 500.