enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Early stopping - Wikipedia

    en.wikipedia.org/wiki/Early_stopping

    For the analysis leading to the early stopping rule and bounds, the reader is referred to the original article. [3] In practice, data-driven methods, e.g. cross-validation can be used to obtain an adaptive stopping rule.

  3. Generalization error - Wikipedia

    en.wikipedia.org/wiki/Generalization_error

    Data points were generated from the relationship y = x with white noise added to the y values. In the left column, a set of training points is shown in blue. A seventh order polynomial function was fit to the training data. In the right column, the function is tested on data sampled from the underlying joint probability distribution of x and y ...

  4. Decision tree pruning - Wikipedia

    en.wikipedia.org/wiki/Decision_tree_pruning

    Pruning reduces the complexity of the final classifier, and hence improves predictive accuracy by the reduction of overfitting. One of the questions that arises in a decision tree algorithm is the optimal size of the final tree. A tree that is too large risks overfitting the training data and poorly generalizing to new samples. A small tree ...

  5. Regularization (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Regularization_(mathematics)

    In machine learning, a key challenge is enabling models to accurately predict outcomes on unseen data, not just on familiar training data. Regularization is crucial for addressing overfitting—where a model memorizes training data details but can't generalize to new data. The goal of regularization is to encourage models to learn the broader ...

  6. Overfitting - Wikipedia

    en.wikipedia.org/wiki/Overfitting

    Regularization: Regularization is a technique used to prevent overfitting by adding a penalty term to the loss function that discourages large parameter values. It can also be used to prevent underfitting by controlling the complexity of the model. [15] Ensemble Methods: Ensemble methods combine multiple models to create a more accurate ...

  7. Data augmentation - Wikipedia

    en.wikipedia.org/wiki/Data_augmentation

    Data augmentation is a statistical technique which allows maximum likelihood estimation from incomplete data. [1] [2] Data augmentation has important applications in Bayesian analysis, [3] and the technique is widely used in machine learning to reduce overfitting when training machine learning models, [4] achieved by training models on several slightly-modified copies of existing data.

  8. Dilution (neural networks) - Wikipedia

    en.wikipedia.org/wiki/Dilution_(neural_networks)

    On the left is a fully connected neural network with two hidden layers. On the right is the same network after applying dropout. Dilution and dropout (also called DropConnect [1]) are regularization techniques for reducing overfitting in artificial neural networks by preventing complex co-adaptations on training data.

  9. Regularization perspectives on support vector machines

    en.wikipedia.org/wiki/Regularization...

    SVM algorithms categorize binary data, with the goal of fitting the training set data in a way that minimizes the average of the hinge-loss function and L2 norm of the learned weights. This strategy avoids overfitting via Tikhonov regularization and in the L2 norm sense and also corresponds to minimizing the bias and variance of our estimator ...