Search results
Results from the WOW.Com Content Network
In physics, Gauss's law for gravity, also known as Gauss's flux theorem for gravity, is a law of physics that is equivalent to Newton's law of universal gravitation. It is named after Carl Friedrich Gauss. It states that the flux (surface integral) of the gravitational field over any closed surface is proportional to the mass enclosed. Gauss's ...
In fact, any inverse-square law can be formulated in a way similar to Gauss's law: for example, Gauss's law itself is essentially equivalent to Coulomb's law, and Gauss's law for gravity is essentially equivalent to Newton's law of gravity, both of which are inverse-square laws.
The shell theorem is an immediate consequence of Gauss's law for gravity saying that ∫ S g ⋅ d S = − 4 π G M {\displaystyle \int _{S}{\mathbf {g} }\cdot \,d{\mathbf {S} }=-4\pi GM} where M is the mass of the part of the spherically symmetric mass distribution that is inside the sphere with radius r and
As a consequence of the law of gravitation and Kepler's third law, k is directly proportional to the square root of the standard gravitational parameter of the Sun, and its value in radians per day follows by setting Earth's semi-major axis (the astronomical unit, au) to unity, k:(rad/d) = (G M ☉) 0.5 ·au −1.5.
At a fixed point on the surface, the magnitude of Earth's gravity results from combined effect of gravitation and the centrifugal force from Earth's rotation. [2] [3] At different points on Earth's surface, the free fall acceleration ranges from 9.764 to 9.834 m/s 2 (32.03 to 32.26 ft/s 2), [4] depending on altitude, latitude, and longitude.
It is an arbitrary closed surface S = ∂V (the boundary of a 3-dimensional region V) used in conjunction with Gauss's law for the corresponding field (Gauss's law, Gauss's law for magnetism, or Gauss's law for gravity) by performing a surface integral, in order to calculate the total amount of the source quantity enclosed; e.g., amount of ...
The divergence of a vector field which is the resultant of radial inverse-square law fields with respect to one or more sources is proportional to the strength of the local sources, and hence zero outside sources. Newton's law of universal gravitation follows an inverse-square law, as do the effects of electric, light, sound, and radiation ...
Today's NYT Connections puzzle for Thursday, February 13, 2025The New York Times