Search results
Results from the WOW.Com Content Network
Mean shift is a non-parametric feature-space mathematical analysis technique for locating the maxima of a density function, a so-called mode-seeking algorithm. [1] Application domains include cluster analysis in computer vision and image processing .
This category contains algorithms used for cluster analysis. Pages in category "Cluster analysis algorithms" ... Mean shift; N. Nearest-neighbor chain algorithm;
When clustering text databases with the cover coefficient on a document collection defined by a document by term D matrix (of size m×n, where m is the number of documents and n is the number of terms), the number of clusters can roughly be estimated by the formula where t is the number of non-zero entries in D. Note that in D each row and each ...
Due to the expensive iterative procedure and density estimation, mean-shift is usually slower than DBSCAN or k-Means. Besides that, the applicability of the mean-shift algorithm to multidimensional data is hindered by the unsmooth behaviour of the kernel density estimate, which results in over-fragmentation of cluster tails. [16]
For example, k-means clustering is equivalent to estimation of the EII clustering model using the classification EM algorithm. [8] The Bayesian information criterion (BIC) can be used to choose the best clustering model as well as the number of clusters.
An advantage of mean shift clustering over k-means is the detection of an arbitrary number of clusters in the data set, as there is not a parameter determining the number of clusters. Mean shift can be much slower than k -means, and still requires selection of a bandwidth parameter.
In statistics and signal processing, step detection (also known as step smoothing, step filtering, shift detection, jump detection or edge detection) is the process of finding abrupt changes (steps, jumps, shifts) in the mean level of a time series or signal.
Automatic clustering algorithms are algorithms that can perform clustering without prior knowledge of data sets. In contrast with other cluster analysis techniques, automatic clustering algorithms can determine the optimal number of clusters even in the presence of noise and outlier points. [1] [needs context]