Search results
Results from the WOW.Com Content Network
Classical solutions based on the half-space approach are: Hertz solved the contact problem in the absence of friction, for a simple geometry (curved surfaces with constant radii of curvature). Carter considered the rolling contact between a cylinder and a plane, as described above.
The two regimes of dry friction are 'static friction' ("stiction") between non-moving surfaces, and kinetic friction (sometimes called sliding friction or dynamic friction) between moving surfaces. Coulomb friction, named after Charles-Augustin de Coulomb , is an approximate model used to calculate the force of dry friction.
[3] [4] In 1882, Hertz solved the contact problem of two elastic bodies with curved surfaces. This still-relevant classical solution provides a foundation for modern problems in contact mechanics. For example, in mechanical engineering and tribology, Hertzian contact stress is a description of the stress within mating parts. The Hertzian ...
However, once the solution is obtained, the final direction of motion is determined to contradict the assumed direction of the friction force, leading to a paradox. [ 1 ] This result is due to a number of discontinuities in the behavior of rigid bodies and the discontinuities inherent in the Coulomb friction law, especially when dealing with ...
The moving part then decelerates to a stop from the dynamic contact friction. The cycle repeats as the forcing element catches up to contact again. Stick, store spring energy, impulsively release spring energy, accelerate, decelerate, stop, stick. Repeat. Stiction is a problem for the design and materials science of many moving linkages.
The load then starts sliding, and the friction coefficient decreases to the value corresponding to load times the dynamic friction. Since this frictional force will be lower than the static value, the load accelerates until the decompressing spring can no longer generate enough force to overcome dynamic friction, and the load stops moving.
Once the friction factors of the pipes are obtained (or calculated from pipe friction laws such as the Darcy-Weisbach equation), we can consider how to calculate the flow rates and head losses on the network. Generally the head losses (potential differences) at each node are neglected, and a solution is sought for the steady-state flows on the ...
Coulomb damping dissipates energy constantly because of sliding friction. The magnitude of sliding friction is a constant value; independent of surface area, displacement or position, and velocity. The system undergoing Coulomb damping is periodic or oscillating and restrained by the sliding friction.