Search results
Results from the WOW.Com Content Network
In metrology, measurement uncertainty is the expression of the statistical dispersion of the values attributed to a quantity measured on an interval or ratio scale.. All measurements are subject to uncertainty and a measurement result is complete only when it is accompanied by a statement of the associated uncertainty, such as the standard deviation.
An example of a source of this uncertainty would be the drag in an experiment designed to measure the acceleration of gravity near the earth's surface. The commonly used gravitational acceleration of 9.8 m/s² ignores the effects of air resistance, but the air resistance for the object could be measured and incorporated into the experiment to ...
For example, the 68% confidence ... If we take the variance on both sides and use the formula [11] ... GUM, Guide to the Expression of Uncertainty in Measurement;
[24] [25] Instead, a measure called guesswork can be used to measure the effort required for a brute force attack. [26] Other problems may arise from non-uniform distributions used in cryptography. For example, a 1,000,000-digit binary one-time pad using exclusive or. If the pad has 1,000,000 bits of entropy, it is perfect.
The measure precision at k, for example, is a measure of precision looking only at the top ten (k=10) search results. More sophisticated metrics, such as discounted cumulative gain , take into account each individual ranking, and are more commonly used where this is important.
For example, an experimental uncertainty analysis of an undergraduate physics lab experiment in which a pendulum can estimate the value of the local gravitational acceleration constant g. The relevant equation [ 1 ] for an idealized simple pendulum is, approximately,
For example, a logarithm of base 2 8 = 256 will produce a measurement in bytes per symbol, and a logarithm of base 10 will produce a measurement in decimal digits (or hartleys) per symbol. Intuitively, the entropy H X of a discrete random variable X is a measure of the amount of uncertainty associated with the value of X when only its ...
The uncertainty principle, also known as Heisenberg's indeterminacy principle, is a fundamental concept in quantum mechanics. It states that there is a limit to the precision with which certain pairs of physical properties, such as position and momentum, can be simultaneously known. In other words, the more accurately one property is measured ...