enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Boundary conditions in fluid dynamics - Wikipedia

    en.wikipedia.org/wiki/Boundary_conditions_in...

    Showing wall boundary condition. The most common boundary that comes upon in confined fluid flow problems is the wall of the conduit. The appropriate requirement is called the no-slip boundary condition, wherein the normal component of velocity is fixed at zero, and the tangential component is set equal to the velocity of the wall. [1]

  3. Compressible flow - Wikipedia

    en.wikipedia.org/wiki/Compressible_flow

    Compressible flow (or gas dynamics) is the branch of fluid mechanics that deals with flows having significant changes in fluid density.While all flows are compressible, flows are usually treated as being incompressible when the Mach number (the ratio of the speed of the flow to the speed of sound) is smaller than 0.3 (since the density change due to velocity is about 5% in that case). [1]

  4. Blasius boundary layer - Wikipedia

    en.wikipedia.org/wiki/Blasius_boundary_layer

    A schematic diagram of the Blasius flow profile. The streamwise velocity component () / is shown, as a function of the similarity variable .. Using scaling arguments, Ludwig Prandtl [1] argued that about half of the terms in the Navier-Stokes equations are negligible in boundary layer flows (except in a small region near the leading edge of the plate).

  5. Unified methods for computing incompressible and compressible ...

    en.wikipedia.org/wiki/Unified_methods_for...

    6.1 Boundary conditions. 7 Runge–Kutta method. ... the basic cause of failure for the compressible flow methods is the stiffness of the governing equations.

  6. Fluid dynamics - Wikipedia

    en.wikipedia.org/wiki/Fluid_dynamics

    In a compressible fluid, it is convenient to define the total conditions (also called stagnation conditions) for all thermodynamic state properties (such as total temperature, total enthalpy, total speed of sound). These total flow conditions are a function of the fluid velocity and have different values in frames of reference with different ...

  7. Reynolds number - Wikipedia

    en.wikipedia.org/wiki/Reynolds_number

    In boundary layer flow over a flat plate, experiments confirm that, after a certain length of flow, a laminar boundary layer will become unstable and turbulent. This instability occurs across different scales and with different fluids, usually when Re x ≈ 5 × 10 5 , [ 12 ] where x is the distance from the leading edge of the flat plate, and ...

  8. Boundary layer thickness - Wikipedia

    en.wikipedia.org/wiki/Boundary_layer_thickness

    The boundary layer thickness, , is the distance normal to the wall to a point where the flow velocity has essentially reached the 'asymptotic' velocity, .Prior to the development of the Moment Method, the lack of an obvious method of defining the boundary layer thickness led much of the flow community in the later half of the 1900s to adopt the location , denoted as and given by

  9. Boundary layer - Wikipedia

    en.wikipedia.org/wiki/Boundary_layer

    The layer of air over the wing's surface that is slowed down or stopped by viscosity, is the boundary layer. There are two different types of boundary layer flow: laminar and turbulent. [1] Laminar boundary layer flow. The laminar boundary is a very smooth flow, while the turbulent boundary layer contains swirls or "eddies."