enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Compressible flow - Wikipedia

    en.wikipedia.org/wiki/Compressible_flow

    In compressible flow, however, the gas density and temperature also become variables. This requires two more equations in order to solve compressible-flow problems: an equation of state for the gas and a conservation of energy equation. For the majority of gas-dynamic problems, the simple ideal gas law is the appropriate state equation.

  3. Bernoulli's principle - Wikipedia

    en.wikipedia.org/wiki/Bernoulli's_principle

    Because the energy per unit mass of liquid in a well-mixed reservoir is uniform throughout, Bernoulli's equation can be used to analyze the fluid flow everywhere in that reservoir (including pipes or flow fields that the reservoir feeds) except where viscous forces dominate and erode the energy per unit mass. [6]: Example 3.5 and p.116

  4. Euler equations (fluid dynamics) - Wikipedia

    en.wikipedia.org/wiki/Euler_equations_(fluid...

    Then for an ideal gas the compressible Euler equations can be simply expressed in the mechanical or primitive variables specific volume, flow velocity and pressure, by taking the set of the equations for a thermodynamic system and modifying the energy equation into a pressure equation through this mechanical equation of state. At last, in ...

  5. Fluid dynamics - Wikipedia

    en.wikipedia.org/wiki/Fluid_dynamics

    The equation above is a vector equation in a three-dimensional flow, but it can be expressed as three scalar equations in three coordinate directions. The conservation of momentum equations for the compressible, viscous flow case is called the Navier–Stokes equations. [2] Conservation of energy

  6. Navier–Stokes equations - Wikipedia

    en.wikipedia.org/wiki/Navier–Stokes_equations

    The difference between them and the closely related Euler equations is that Navier–Stokes equations take viscosity into account while the Euler equations model only inviscid flow. As a result, the Navier–Stokes are an elliptic equation and therefore have better analytic properties, at the expense of having less mathematical structure (e.g ...

  7. First law of thermodynamics (fluid mechanics) - Wikipedia

    en.wikipedia.org/wiki/First_law_of...

    is the flow velocity. and is the heat flux vector. Because it expresses conservation of total energy, this is sometimes referred to as the energy balance equation of continuous media. The first law is used to derive the non-conservation form of the Navier–Stokes equations. [3]

  8. Stagnation temperature - Wikipedia

    en.wikipedia.org/wiki/Stagnation_temperature

    At a stagnation point, the speed of the fluid is zero and all of the kinetic energy has been converted to internal energy and is added to the local static enthalpy. In both compressible and incompressible fluid flow, the stagnation temperature equals the total temperature at all points on the streamline leading to the stagnation point.

  9. Large eddy simulation - Wikipedia

    en.wikipedia.org/wiki/Large_eddy_simulation

    The governing equations of LES are obtained by filtering the partial differential equations governing the flow field (,). There are differences between the incompressible and compressible LES governing equations, which lead to the definition of a new filtering operation.