Search results
Results from the WOW.Com Content Network
A skew heap (or self-adjusting heap) is a heap data structure implemented as a binary tree. Skew heaps are advantageous because of their ability to merge more quickly than binary heaps. In contrast with binary heaps, there are no structural constraints, so there is no guarantee that the height of the tree is logarithmic. Only two conditions ...
In machine learning, hyperparameter optimization [1] or tuning is the problem of choosing a set of optimal hyperparameters for a learning algorithm. A hyperparameter is a parameter whose value is used to control the learning process, which must be configured before the process starts.
The aim of a self-organizing list is to improve efficiency of linear search by moving more frequently accessed items towards the head of the list. A self-organizing list achieves near constant time for element access in the best case. A self-organizing list uses a reorganizing algorithm to adapt to various query distributions at runtime.
Self-tuning metaheuristics have emerged as a significant advancement in the field of optimization algorithms in recent years, since fine tuning can be a very long and difficult process. [3] These algorithms differentiate themselves by their ability to autonomously adjust their parameters in response to the problem at hand, enhancing efficiency ...
In multi-agent reinforcement learning experiments, researchers try to optimize the performance of a learning agent on a given task, in cooperation or competition with one or more agents. These agents learn by trial-and-error, and researchers may choose to have the learning algorithm play the role of two or more of the different agents.
A simple example is fitting a line in two dimensions to a set of observations. Assuming that this set contains both inliers, i.e., points which approximately can be fitted to a line, and outliers, points which cannot be fitted to this line, a simple least squares method for line fitting will generally produce a line with a bad fit to the data including inliers and outliers.
The Yarowsky algorithm is an example of self-supervised learning in natural language processing. From a small number of labeled examples, it learns to predict which word sense of a polysemous word is being used at a given point in text. DirectPred is a NCSSL that directly sets the predictor weights instead of learning it via typical gradient ...
Large margin nearest neighbor (LMNN) [1] classification is a statistical machine learning algorithm for metric learning. It learns a pseudometric designed for k-nearest neighbor classification. The algorithm is based on semidefinite programming , a sub-class of convex optimization .