Search results
Results from the WOW.Com Content Network
The attractive force draws molecules closer together and gives a real gas a tendency to occupy a smaller volume than an ideal gas. Which interaction is more important depends on temperature and pressure (see compressibility factor). In a gas, the distances between molecules are generally large, so intermolecular forces have only a small effect.
Therefore, the Mie potential is a more flexible intermolecular potential than the simpler Lennard-Jones potential. The Mie potential is used today in many force fields in molecular modeling . Typically, the attractive exponent is chosen to be m = 6 {\textstyle m=6} , whereas the repulsive exponent is used as an adjustable parameter during the ...
Hydrogen-bonding-in-water. A hydrogen bond (H-bond), is a specific type of interaction that involves dipole–dipole attraction between a partially positive hydrogen atom and a highly electronegative, partially negative oxygen, nitrogen, sulfur, or fluorine atom (not covalently bound to said hydrogen atom).
Stronger attractive forces between the mixed molecules, such as hydrogen-bonding, induced-dipole, and dipole-dipole interactions result in a lower enthalpy of the mixture and a release of heat. [6] If strong interactions only exist between like-molecules, such as H-bonds between water in a water-hexane solution, the mixture will have a higher ...
In computational chemistry, molecular physics, and physical chemistry, the Lennard-Jones potential (also termed the LJ potential or 12-6 potential; named for John Lennard-Jones) is an intermolecular pair potential. Out of all the intermolecular potentials, the Lennard-Jones potential is probably the one that has been the most extensively studied.
In chemistry, sigma hole interactions (or σ-hole interactions) are a family of intermolecular forces that can occur between several classes of molecules and arise from an energetically stabilizing interaction between a positively-charged site, termed a sigma hole, and a negatively-charged site, typically a lone pair, on different atoms that are not covalently bonded to each other. [1]
The strength of intermolecular hydrogen bonds is most often evaluated by measurements of equilibria between molecules containing donor and/or acceptor units, most often in solution. [21] The strength of intramolecular hydrogen bonds can be studied with equilibria between conformers with and without hydrogen bonds.
Once two of the three reduced properties are found, the compressibility chart can be used. In a compressibility chart, reduced pressure is on the x-axis and Z is on the y-axis. When given the reduced pressure and temperature, find the given pressure on the x-axis. From there, move up on the chart until the given reduced temperature is found.