enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Partition function (number theory) - Wikipedia

    en.wikipedia.org/wiki/Partition_function_(number...

    Srinivasa Ramanujan is credited with discovering that the partition function has nontrivial patterns in modular arithmetic. For instance the number of partitions is divisible by five whenever the decimal representation of n {\displaystyle n} ends in the digit 4 or 9, as expressed by the congruence [ 7 ] p ( 5 k + 4 ) ≡ 0 ( mod 5 ...

  3. Integer partition - Wikipedia

    en.wikipedia.org/wiki/Integer_partition

    Srinivasa Ramanujan discovered that the partition function has nontrivial patterns in modular arithmetic, now known as Ramanujan's congruences. For instance, whenever the decimal representation of n {\displaystyle n} ends in the digit 4 or 9, the number of partitions of n {\displaystyle n} will be divisible by 5.

  4. Ramanujan's congruences - Wikipedia

    en.wikipedia.org/wiki/Ramanujan's_congruences

    In mathematics, Ramanujan's congruences are the congruences for the partition function p(n) discovered by Srinivasa Ramanujan: (+) (), (+) (), (+) ().In plain words, e.g., the first congruence means that If a number is 4 more than a multiple of 5, i.e. it is in the sequence

  5. Crank of a partition - Wikipedia

    en.wikipedia.org/wiki/Crank_of_a_partition

    Let n be a non-negative integer and let p(n) denote the number of partitions of n (p(0) is defined to be 1).Srinivasa Ramanujan in a paper [3] published in 1918 stated and proved the following congruences for the partition function p(n), since known as Ramanujan congruences.

  6. Rogers–Ramanujan identities - Wikipedia

    en.wikipedia.org/wiki/Rogers–Ramanujan_identities

    The Rogers–Ramanujan identities could be now interpreted in the following way. Let be a non-negative integer. The number of partitions of such that the adjacent parts differ by at least 2 is the same as the number of partitions of such that each part is congruent to either 1 or 4 modulo 5.

  7. Rank of a partition - Wikipedia

    en.wikipedia.org/wiki/Rank_of_a_partition

    The integers λ k, λ k − 1, ..., λ 1 are the parts of the partition. The number of parts in the partition λ is k and the largest part in the partition is λ k. The rank of the partition λ (whether ordinary or strict) is defined as λ k − k. [1] The ranks of the partitions of n take the following values and no others: [1]

  8. Hardy–Ramanujan–Littlewood circle method - Wikipedia

    en.wikipedia.org/wiki/Hardy–Ramanujan...

    The initial idea is usually attributed to the work of Hardy with Srinivasa Ramanujan a few years earlier, in 1916 and 1917, on the asymptotics of the partition function.It was taken up by many other researchers, including Harold Davenport and I. M. Vinogradov, who modified the formulation slightly (moving from complex analysis to exponential sums), without changing the broad lines.

  9. G. H. Hardy - Wikipedia

    en.wikipedia.org/wiki/G._H._Hardy

    However, aside from formulating the Hardy–Weinberg principle in population genetics, his famous work on integer partitions with his collaborator Ramanujan, known as the Hardy–Ramanujan asymptotic formula, has been widely applied in physics to find quantum partition functions of atomic nuclei (first used by Niels Bohr) and to derive ...