Search results
Results from the WOW.Com Content Network
The Taylor series of f converges uniformly to the zero function T f (x) = 0, which is analytic with all coefficients equal to zero. The function f is unequal to this Taylor series, and hence non-analytic. For any order k ∈ N and radius r > 0 there exists M k,r > 0 satisfying the remainder bound above.
Taylor series are used to define functions and "operators" in diverse areas of mathematics. In particular, this is true in areas where the classical definitions of functions break down. For example, using Taylor series, one may extend analytic functions to sets of matrices and operators, such as the matrix exponential or matrix logarithm.
In probability theory, it is possible to approximate the moments of a function f of a random variable X using Taylor expansions, provided that f is sufficiently differentiable and that the moments of X are finite.
Given a twice continuously differentiable function of one real variable, Taylor's theorem for the case = states that = + ′ () + where is the remainder term. The linear approximation is obtained by dropping the remainder: f ( x ) ≈ f ( a ) + f ′ ( a ) ( x − a ) . {\displaystyle f(x)\approx f(a)+f'(a)(x-a).}
A Laurent series is a generalization of the Taylor series, allowing terms with negative exponents; it takes the form = and converges in an annulus. [6] In particular, a Laurent series can be used to examine the behavior of a complex function near a singularity by considering the series expansion on an annulus centered at the singularity.
For example, the series + + + ... is the Taylor series of ... who also gave a general form for the remainder of the Maclaurin formula. The most important solution of ...
Ellis-Taylor forges a great performance from small, lived-in moments; the film breathes, and expands, whenever she’s on-screen. Yura Borisov, Anora Yura Borisov (right) as Igor, with Vache ...
Multi-index notation is a mathematical notation that simplifies formulas used in multivariable calculus, partial differential equations and the theory of distributions, by generalising the concept of an integer index to an ordered tuple of indices.