enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Bertrand's postulate - Wikipedia

    en.wikipedia.org/wiki/Bertrand's_postulate

    His conjecture was completely proved by Chebyshev (1821–1894) in 1852 [3] and so the postulate is also called the Bertrand–Chebyshev theorem or Chebyshev's theorem. Chebyshev's theorem can also be stated as a relationship with π ( x ) {\displaystyle \pi (x)} , the prime-counting function (number of primes less than or equal to x ...

  3. Chebyshev's theorem - Wikipedia

    en.wikipedia.org/wiki/Chebyshev's_theorem

    Chebyshev's theorem is any of several theorems proven by Russian mathematician Pafnuty Chebyshev. Bertrand's postulate, that for every n there is a prime between n and 2n. Chebyshev's inequality, on the range of standard deviations around the mean, in statistics; Chebyshev's sum inequality, about sums and products of decreasing sequences

  4. Chebyshev equation - Wikipedia

    en.wikipedia.org/wiki/Chebyshev_equation

    Chebyshev's equation is the second order linear differential equation + = where p is a real (or complex) constant. The equation is named after Russian mathematician Pafnuty Chebyshev. The solutions can be obtained by power series:

  5. Proof of Bertrand's postulate - Wikipedia

    en.wikipedia.org/wiki/Proof_of_Bertrand's_postulate

    In mathematics, Bertrand's postulate (now a theorem) states that, for each , there is a prime such that < <. First conjectured in 1845 by Joseph Bertrand, [1] it was first proven by Chebyshev, and a shorter but also advanced proof was given by Ramanujan. [2]

  6. Chebyshev's inequality - Wikipedia

    en.wikipedia.org/wiki/Chebyshev's_inequality

    The rule is often called Chebyshev's theorem, about the range of standard deviations around the mean, in statistics. The inequality has great utility because it can be applied to any probability distribution in which the mean and variance are defined. For example, it can be used to prove the weak law of large numbers.

  7. Chebyshev's sum inequality - Wikipedia

    en.wikipedia.org/wiki/Chebyshev's_sum_inequality

    Consider the sum = = = (). The two sequences are non-increasing, therefore a j − a k and b j − b k have the same sign for any j, k.Hence S ≥ 0.. Opening the brackets, we deduce:

  8. William S. Thompson, Jr. - Pay Pals - The Huffington Post

    data.huffingtonpost.com/paypals/william-s-thompson

    From April 2009 to December 2012, if you bought shares in companies when William S. Thompson, Jr. joined the board, and sold them when he left, you would have a 22.1 percent return on your investment, compared to a 67.8 percent return from the S&P 500.

  9. Pafnuty Chebyshev - Wikipedia

    en.wikipedia.org/wiki/Pafnuty_Chebyshev

    Chebyshev is also known for the Chebyshev polynomials and the Chebyshev bias – the difference between the number of primes that are congruent to 3 (modulo 4) and 1 (modulo 4). [ 9 ] Chebyshev was the first person to think systematically in terms of random variables and their moments and expectations .