Search results
Results from the WOW.Com Content Network
A metric or distance function is a function d which takes pairs of points or objects to real numbers and satisfies the following rules: The distance between an object and itself is always zero. The distance between distinct objects is always positive. Distance is symmetric: the distance from x to y is always the same as the distance from y to x.
Distance geometry is the branch of mathematics concerned with characterizing and studying sets of points based only on given values of the distances between pairs of points. [ 1 ] [ 2 ] [ 3 ] More abstractly, it is the study of semimetric spaces and the isometric transformations between them.
In mathematics, a metric space is a set together with a notion of distance between its elements, usually called points. The distance is measured by a function called a metric or distance function. [1] Metric spaces are the most general setting for studying many of the concepts of mathematical analysis and geometry.
In mathematics and its applications, the signed distance function or signed distance field (SDF) is the orthogonal distance of a given point x to the boundary of a set Ω in a metric space (such as the surface of a geometric shape), with the sign determined by whether or not x is in the interior of Ω.
Whenever the rate of change f′ of a quantity f is proportional to the displacement of an object, the quantity f is a linear function of the object's absement. For example, when the fuel flow rate is proportional to the position of the throttle lever, then the total amount of fuel consumed is proportional to the lever's absement.
The Euclidean distance is the prototypical example of the distance in a metric space, [10] and obeys all the defining properties of a metric space: [11] It is symmetric, meaning that for all points and , (,) = (,). That is (unlike road distance with one-way streets) the distance between two points does not depend on which of the two points is ...
In mathematics, the Simon problems (or Simon's problems) are a series of fifteen questions posed in the year 2000 by Barry Simon, an American mathematical physicist. [ 1 ] [ 2 ] Inspired by other collections of mathematical problems and open conjectures, such as the famous list by David Hilbert , the Simon problems concern quantum operators . [ 3 ]
There is no analytic solution for this problem, since solving for the distance requires the solution of a sixth order polynomial equation. Here an algorithm is developed to determine this distance, based on the analytic results for the distance of closest approach of ellipses in 2D, which can be implemented numerically. Details are given in ...