enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. List of limits - Wikipedia

    en.wikipedia.org/wiki/List_of_limits

    If is expressed in radians: ⁡ = ⁡ ⁡ = ⁡ These limits both follow from the continuity of sin and cos. ⁡ =. [7] [8] Or, in general, ⁡ =, for a not equal to 0. ⁡ = ⁡ =, for b not equal to 0.

  3. Classification of discontinuities - Wikipedia

    en.wikipedia.org/wiki/Classification_of...

    In other words, since the two one-sided limits exist and are equal, the limit of () as approaches exists and is equal to this same value. If the actual value of f ( x 0 ) {\displaystyle f\left(x_{0}\right)} is not equal to L , {\displaystyle L,} then x 0 {\displaystyle x_{0}} is called a removable discontinuity .

  4. Limit of a function - Wikipedia

    en.wikipedia.org/wiki/Limit_of_a_function

    respectively. If these limits exist at p and are equal there, then this can be referred to as the limit of f(x) at p. [7] If the one-sided limits exist at p, but are unequal, then there is no limit at p (i.e., the limit at p does not exist). If either one-sided limit does not exist at p, then the limit at p also does not exist.

  5. Limit (category theory) - Wikipedia

    en.wikipedia.org/wiki/Limit_(category_theory)

    A functor G : C → D is said to lift limits for a diagram F : J → C if whenever (L, φ) is a limit of GF there exists a limit (L′, φ′) of F such that G(L′, φ′) = (L, φ). A functor G lifts limits of shape J if it lifts limits for all diagrams of shape J. One can therefore talk about lifting products, equalizers, pullbacks, etc.

  6. Limit (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Limit_(mathematics)

    In mathematics, a limit is the value that a function (or sequence) approaches as the argument (or index) approaches some value. [1] Limits of functions are essential to calculus and mathematical analysis, and are used to define continuity, derivatives, and integrals.

  7. Hemicontinuity - Wikipedia

    en.wikipedia.org/wiki/Hemicontinuity

    The image of the limit of a contains a single point f(x), so it does not contain the limit of b. In contrast, that function is lower hemicontinuous everywhere. For example, for any sequence a that converges to x, from the left or from the right, f(x) contains a single point, and there exists a corresponding sequence b that converges to f(x).

  8. Iterated limit - Wikipedia

    en.wikipedia.org/wiki/Iterated_limit

    In multivariable calculus, an iterated limit is a limit of a sequence or a limit of a function in the form , = (,), (,) = ((,)),or other similar forms. An iterated limit is only defined for an expression whose value depends on at least two variables. To evaluate such a limit, one takes the limiting process as one of the two variables approaches some number, getting an expression whose value ...

  9. Limit of a sequence - Wikipedia

    en.wikipedia.org/wiki/Limit_of_a_sequence

    For any continuous function, if exists, then () exists too. In fact, any real-valued function f {\textstyle f} is continuous if and only if it preserves the limits of sequences (though this is not necessarily true when using more general notions of continuity).