Ad
related to: coriolis flow meter calibration equipment diagram
Search results
Results from the WOW.Com Content Network
The mass flow of a U-shaped Coriolis flow meter is given as: Q m = K u − I u ω 2 2 K d 2 τ {\displaystyle Q_{m}={\frac {K_{u}-I_{u}\omega ^{2}}{2Kd^{2}}}\tau } where K u is the temperature dependent stiffness of the tube, K is a shape-dependent factor, d is the width, τ is the time lag, ω is the vibration frequency, and I u is the inertia ...
A mass flow controller is designed and calibrated to control a specific type of liquid or gas at a particular range of flow rates. The MFC can be given a setpoint from 0 to 100% of its full scale range but is typically operated in the 10 to 90% of full scale where the best accuracy is achieved.
Furthermore, a direct measure of the density of the fluid is obtained. Coriolis measurement can be very accurate irrespective of the type of gas or liquid that is measured; the same measurement tube can be used for hydrogen gas and bitumen without recalibration. [citation needed] Coriolis flowmeters can be used for the measurement of natural ...
A Coriolis water meter is a precision instrument used to measure the mass flow rate and density of fluids, including water, by utilizing the Coriolis effect. Unlike traditional mechanical meters with moving parts, Coriolis meters use oscillating tubes through which the fluid flows.
Figure (8) showing Coriolis meter. Flow conditioners make no effect on meter accuracy while using wet gas due to the annular flow regime, which is not highly affected by flow conditioners. In single-phase conditions, Coriolis meter gives accurate measurement even in presence of severe flow disturbances.
The Coriolis principle for flow measurement requires the oscillating section of a rotating pipe to be exploited. Oscillation produces the Coriolis force, which traditionally is sensed and analyzed to determine the rate of flow. Modern coriolis meters utilize the phase difference measured at each end of the oscillating pipe. [11]
An outline of key instrumentation is shown on Process Flow Diagrams (PFD) which indicate the principal equipment and the flow of fluids in the plant. Piping and Instrumentation Diagrams (P&ID) provide details of all the equipment (vessels, pumps, etc), piping and instrumentation on the plant in a symbolic and diagrammatic form.
Retrieved from "https://en.wikipedia.org/w/index.php?title=Coriolis_flow_meter&oldid=243779541"
Ad
related to: coriolis flow meter calibration equipment diagram