Search results
Results from the WOW.Com Content Network
The user can search for elements in an associative array, and delete elements from the array. The following shows how multi-dimensional associative arrays can be simulated in standard AWK using concatenation and the built-in string-separator variable SUBSEP:
General array slicing can be implemented (whether or not built into the language) by referencing every array through a dope vector or descriptor – a record that contains the address of the first array element, and then the range of each index and the corresponding coefficient in the indexing formula.
As no elements are actually removed and the container retains the same size, the tail of the array has a length equal to the number of "removed" items; these items remain in memory but in an unspecified state. remove returns an iterator pointing to the first of these tail elements so that they can be deleted using a single call to erase.
In computer science, an associative array, map, symbol table, or dictionary is an abstract data type that stores a collection of (key, value) pairs, such that each possible key appears at most once in the collection. In mathematical terms, an associative array is a function with finite domain. [1] It supports 'lookup', 'remove', and 'insert ...
Javascript's Array prototype & Perl's arrays have native support for both removing (shift and pop) and adding (unshift and push) elements on both ends. Python 2.4 introduced the collections module with support for deque objects .
The following list contains syntax examples of how a range of element of an array can be accessed. In the following table: first – the index of the first element in the slice; last – the index of the last element in the slice; end – one more than the index of last element in the slice; len – the length of the slice (= end - first)
The dynamic array has performance similar to an array, with the addition of new operations to add and remove elements: Getting or setting the value at a particular index (constant time) Iterating over the elements in order (linear time, good cache performance) Inserting or deleting an element in the middle of the array (linear time)
Note how the use of A[i][j] with multi-step indexing as in C, as opposed to a neutral notation like A(i,j) as in Fortran, almost inevitably implies row-major order for syntactic reasons, so to speak, because it can be rewritten as (A[i])[j], and the A[i] row part can even be assigned to an intermediate variable that is then indexed in a separate expression.