Search results
Results from the WOW.Com Content Network
Recursive flood fill with 8 directions. The traditional flood-fill algorithm takes three parameters: a start node, a target color, and a replacement color. The algorithm looks for all nodes in the array that are connected to the start node by a path of the target color and changes them to the replacement color.
In mathematics, the infinite series 1 / 2 + 1 / 4 + 1 / 8 + 1 / 16 + ··· is an elementary example of a geometric series that converges absolutely. The sum of the series is 1.
The sum of the labels is 11, smaller than could be achieved using only two labels. In graph theory, a sum coloring of a graph is a labeling of its vertices by positive integers, with no two adjacent vertices having equal labels, that minimizes the sum of the labels. The minimum sum that can be achieved is called the chromatic sum of the graph. [1]
For odd square, since there are (n - 1)/2 same sided rows or columns, there are (n - 1)(n - 3)/8 pairs of such rows or columns that can be interchanged. Thus, there are 2 (n - 1)(n - 3)/8 × 2 (n - 1)(n - 3)/8 = 2 (n - 1)(n - 3)/4 equivalent magic squares obtained by combining such interchanges. Interchanging all the same sided rows flips each ...
Add the clues together, plus 1 for each "space" in between. For example, if the clue is 6 2 3, this step produces the sum 6 + 1 + 2 + 1 + 3 = 13. Subtract this number from the total available in the row (usually the width or height of the puzzle). For example, if the clue in step 1 is in a row 15 cells wide, the difference is 15 - 13 = 2.
Some of those laws go into effect on Jan. 1 including: AB 1483 strengthens a rule against applying for more than one handgun in a 30-day period. The bill removes an exemption for a private party ...
GOP lawmakers are framing the IRS's free direct tax-filing system as an example of the "weaponization of government against Americans."
The smallest number of colors needed to color a graph G is called its chromatic number, and is often denoted χ(G). Sometimes γ(G) is used, since χ(G) is also used to denote the Euler characteristic of a graph. A graph that can be assigned a (proper) k-coloring is k-colorable, and it is k-chromatic if its chromatic number is exactly k.