enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Shortest path problem - Wikipedia

    en.wikipedia.org/wiki/Shortest_path_problem

    The all-pairs shortest path problem finds the shortest paths between every pair of vertices v, v' in the graph. The all-pairs shortest paths problem for unweighted directed graphs was introduced by Shimbel (1953), who observed that it could be solved by a linear number of matrix multiplications that takes a total time of O(V 4).

  3. Distance (graph theory) - Wikipedia

    en.wikipedia.org/wiki/Distance_(graph_theory)

    The weighted shortest-path distance generalises the geodesic distance to weighted graphs. In this case it is assumed that the weight of an edge represents its length or, for complex networks the cost of the interaction, and the weighted shortest-path distance d W ( u , v ) is the minimum sum of weights across all the paths connecting u and v .

  4. Unit distance graph - Wikipedia

    en.wikipedia.org/wiki/Unit_distance_graph

    A unit distance graph with 16 vertices and 40 edges ... in the plane is the undirected graph having those ... distance graphs. The Cartesian products of path graphs ...

  5. Seidel's algorithm - Wikipedia

    en.wikipedia.org/wiki/Seidel's_algorithm

    Seidel's algorithm is an algorithm designed by Raimund Seidel in 1992 for the all-pairs-shortest-path problem for undirected, unweighted, connected graphs. [1] It solves the problem in (⁡) expected time for a graph with vertices, where < is the exponent in the complexity () of matrix multiplication.

  6. Travelling salesman problem - Wikipedia

    en.wikipedia.org/wiki/Travelling_salesman_problem

    TSP can be modeled as an undirected weighted graph, such that cities are the graph's vertices, paths are the graph's edges, and a path's distance is the edge's weight. It is a minimization problem starting and finishing at a specified vertex after having visited each other vertex exactly once.

  7. Shortest-path tree - Wikipedia

    en.wikipedia.org/wiki/Shortest-path_tree

    The numbers beside the vertices indicate the distance from the root vertex. In mathematics and computer science, a shortest-path tree rooted at a vertex v of a connected, undirected graph G is a spanning tree T of G, such that the path distance from root v to any other vertex u in T is the shortest path distance from v to u in G.

  8. Dijkstra's algorithm - Wikipedia

    en.wikipedia.org/wiki/Dijkstra's_algorithm

    Dijkstra's algorithm finds the shortest path from a given source node to every other node. [7]: 196–206 It can be used to find the shortest path to a specific destination node, by terminating the algorithm after determining the shortest path to the destination node. For example, if the nodes of the graph represent cities, and the costs of ...

  9. Shortest-path graph - Wikipedia

    en.wikipedia.org/wiki/Shortest-path_graph

    The shortest-path graph with t = 2. In mathematics and geographic information science, a shortest-path graph is an undirected graph defined from a set of points in the Euclidean plane. The shortest-path graph is proposed with the idea of inferring edges between a point set such that the shortest path taken over the inferred edges will roughly ...