enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Prime number theorem - Wikipedia

    en.wikipedia.org/wiki/Prime_number_theorem

    The first such distribution found is π(N) ~ ⁠ N / log(N) ⁠, where π(N) is the prime-counting function (the number of primes less than or equal to N) and log(N) is the natural logarithm of N. This means that for large enough N , the probability that a random integer not greater than N is prime is very close to 1 / log( N ) .

  3. Prime-counting function - Wikipedia

    en.wikipedia.org/wiki/Prime-counting_function

    In mathematics, the prime-counting function is the function counting the number of prime numbers less than or equal to some real number x. [1] [2] It is denoted by π(x) (unrelated to the number π). A symmetric variant seen sometimes is π 0 (x), which is equal to π(x) − 1 ⁄ 2 if x is exactly a prime number, and equal to π(x) otherwise.

  4. Explicit formulae for L-functions - Wikipedia

    en.wikipedia.org/wiki/Explicit_formulae_for_L...

    Riemann's original use of the explicit formula was to give an exact formula for the number of primes less than a given number. To do this, take F(log(y)) to be y 1/2 /log(y) for 0 ≤ y ≤ x and 0 elsewhere. Then the main term of the sum on the right is the number of primes less than x.

  5. Euclid's theorem - Wikipedia

    en.wikipedia.org/wiki/Euclid's_theorem

    Let π(x) be the prime-counting function that gives the number of primes less than or equal to x, for any real number x. The prime number theorem then states that x / log x is a good approximation to π(x), in the sense that the limit of the quotient of the two functions π(x) and x / log x as x increases without bound is 1:

  6. Chen's theorem - Wikipedia

    en.wikipedia.org/wiki/Chen's_theorem

    There exists a natural number N such that every even integer n larger than N is a sum of a prime less than or equal to n 0.95 and a number with at most two prime factors. Tomohiro Yamada claimed a proof of the following explicit version of Chen's theorem in 2015: [ 7 ]

  7. Analytic number theory - Wikipedia

    en.wikipedia.org/wiki/Analytic_number_theory

    Much of analytic number theory was inspired by the prime number theorem. Let π(x) be the prime-counting function that gives the number of primes less than or equal to x, for any real number x. For example, π(10) = 4 because there are four prime numbers (2, 3, 5 and 7) less than or equal to 10.

  8. Ramanujan prime - Wikipedia

    en.wikipedia.org/wiki/Ramanujan_prime

    where () is the prime-counting function, equal to the number of primes less than or equal to x. The converse of this result is the definition of Ramanujan primes: The n th Ramanujan prime is the least integer R n for which π ( x ) − π ( x / 2 ) ≥ n , {\displaystyle \pi (x)-\pi (x/2)\geq n,} for all x ≥ R n . [ 2 ]

  9. Prime number - Wikipedia

    en.wikipedia.org/wiki/Prime_number

    No even number greater than 2 is prime because any such number can be expressed as the product /. Therefore, every prime number other than 2 is an odd number, and is called an odd prime. [10] Similarly, when written in the usual decimal system, all prime numbers larger than 5 end in 1, 3, 7, or 9. The numbers that end with other digits are all ...