enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Prime-counting function - Wikipedia

    en.wikipedia.org/wiki/Prime-counting_function

    In mathematics, the prime-counting function is the function counting the number of prime numbers less than or equal to some real number x. [1] [2] It is denoted by π(x) (unrelated to the number π). A symmetric variant seen sometimes is π 0 (x), which is equal to π(x) − 1 ⁄ 2 if x is exactly a prime number, and equal to π(x) otherwise.

  3. Prime number theorem - Wikipedia

    en.wikipedia.org/wiki/Prime_number_theorem

    For example, π(10) = 4 because there are four prime numbers (2, 3, 5 and 7) less than or equal to 10. The prime number theorem then states that x / log x is a good approximation to π(x) (where log here means the natural logarithm), in the sense that the limit of the quotient of the two functions π(x) and x / log x as x increases without ...

  4. Explicit formulae for L-functions - Wikipedia

    en.wikipedia.org/wiki/Explicit_formulae_for_L...

    Riemann's original use of the explicit formula was to give an exact formula for the number of primes less than a given number. To do this, take F(log(y)) to be y 1/2 /log(y) for 0 ≤ y ≤ x and 0 elsewhere. Then the main term of the sum on the right is the number of primes less than x.

  5. Euclid's theorem - Wikipedia

    en.wikipedia.org/wiki/Euclid's_theorem

    Let N be a positive integer, and let k be the number of primes less than or equal to N. Call those primes p 1, ... , p k. Any positive integer a which is less than or equal to N can then be written in the form = (), where each e i is either 0 or 1.

  6. Goldbach's conjecture - Wikipedia

    en.wikipedia.org/wiki/Goldbach's_conjecture

    More precisely, they showed that there exist positive constants c and C such that for all sufficiently large numbers N, every even number less than N is the sum of two primes, with at most CN 1 − c exceptions. In particular, the set of even integers that are not the sum of two primes has density zero.

  7. Second Hardy–Littlewood conjecture - Wikipedia

    en.wikipedia.org/wiki/Second_Hardy–Littlewood...

    [2] [3] For example, an admissible k-tuple (or prime constellation) of 447 primes can be found in an interval of y = 3159 integers, while π(3159) = 446. If the first Hardy–Littlewood conjecture holds, then the first such k-tuple is expected for x greater than 1.5 × 10 174 but less than 2.2 × 10 1198. [4]

  8. Meissel–Lehmer algorithm - Wikipedia

    en.wikipedia.org/wiki/Meissel–Lehmer_algorithm

    where ⌊ x ⌋ is the floor function, which denotes the greatest integer less than or equal to x and the p i run over all primes ≤ √ x. [1] [2] Since the evaluation of this sum formula becomes more and more complex and confusing for large x, Meissel tried to simplify the counting of the numbers in the Sieve of Eratosthenes. He and Lehmer ...

  9. Chen's theorem - Wikipedia

    en.wikipedia.org/wiki/Chen's_theorem

    There exists a natural number N such that every even integer n larger than N is a sum of a prime less than or equal to n 0.95 and a number with at most two prime factors. Tomohiro Yamada claimed a proof of the following explicit version of Chen's theorem in 2015: [ 7 ]