Search results
Results from the WOW.Com Content Network
In geometry, Thales's theorem states that if A, B, and C are distinct points on a circle where the line AC is a diameter, the angle ∠ ABC is a right angle. Thales's theorem is a special case of the inscribed angle theorem and is mentioned and proved as part of the 31st proposition in the third book of Euclid's Elements. [1]
The measure of ∠AOB, where O is the center of the circle, is 2α. The inscribed angle theorem states that an angle θ inscribed in a circle is half of the central angle 2θ that intercepts the same arc on the circle. Therefore, the angle does not change as its vertex is moved to different positions on the same arc of the circle.
Secant-, chord-theorem. For the intersecting secants theorem and chord theorem the power of a point plays the role of an invariant: . Intersecting secants theorem: For a point outside a circle and the intersection points , of a secant line with the following statement is true: | | | | = (), hence the product is independent of line .
In geometry, Descartes' theorem states that for every four kissing, or mutually tangent circles, the radii of the circles satisfy a certain quadratic equation. By solving this equation, one can construct a fourth circle tangent to three given, mutually tangent circles. The theorem is named after René Descartes, who stated it in 1643.
The first of these theorems is the spherical analogue of a plane theorem, and the second theorem is its dual, that is, the result of interchanging great circles and their poles. [32] Kiper et al. [ 33 ] proved a converse of the theorem: If the summations of the opposite sides are equal in a spherical quadrilateral, then there exists an ...
Circle packing theorem, the result that every planar graph may be realized by a system of tangent circles; Hexafoil, the shape formed by a ring of six tangent circles; Feuerbach's theorem on the tangency of the nine-point circle of a triangle with its incircle and excircles; Descartes' theorem; Ford circle; Bankoff circle; Archimedes' twin circles
Pascal's original note [1] has no proof, but there are various modern proofs of the theorem. It is sufficient to prove the theorem when the conic is a circle, because any (non-degenerate) conic can be reduced to a circle by a projective transformation. This was realised by Pascal, whose first lemma states the theorem for a circle.
The butterfly theorem is a classical result in Euclidean geometry, which can be stated as follows: [1]: p. 78 Let M be the midpoint of a chord PQ of a circle , through which two other chords AB and CD are drawn; AD and BC intersect chord PQ at X and Y correspondingly.