Search results
Results from the WOW.Com Content Network
The relation is: = +. where L is the light yield, S is the scintillation efficiency, dE/dx is the specific energy loss of the particle per path length, k is the probability of quenching, [1] and B is a constant of proportionality linking the local density of ionized molecules at a point along the particle's path to the specific energy loss; [1] "Since k and B appear only as a product, they act ...
A fundamental physical constant occurring in quantum mechanics is the Planck constant, h. A common abbreviation is ħ = h /2 π , also known as the reduced Planck constant or Dirac constant . Quantity (common name/s)
The Planck constant, or Planck's constant, denoted by , [1] is a fundamental physical constant [1] of foundational importance in quantum mechanics: a photon's energy is equal to its frequency multiplied by the Planck constant, and the wavelength of a matter wave equals the Planck constant divided by the associated particle momentum.
The Planck relation [1] [2] [3] (referred to as Planck's energy–frequency relation, [4] the Planck–Einstein relation, [5] Planck equation, [6] and Planck formula, [7] though the latter might also refer to Planck's law [8] [9]) is a fundamental equation in quantum mechanics which states that the energy E of a photon, known as photon energy, is proportional to its frequency ν: =.
In particle physics, the Dirac equation is a relativistic wave equation derived by British physicist Paul Dirac in 1928. In its free form , or including electromagnetic interactions, it describes all spin-1/2 massive particles , called "Dirac particles", such as electrons and quarks for which parity is a symmetry .
The Boltzmann constant (k B or k) is the proportionality factor that relates the average relative thermal energy of particles in a gas with the thermodynamic temperature of the gas. [2] It occurs in the definitions of the kelvin (K) and the gas constant , in Planck's law of black-body radiation and Boltzmann's entropy formula , and is used in ...
Evaluating the Hubble parameter at the present time yields Hubble's constant which is the proportionality constant of Hubble's law. Applied to a fluid with a given equation of state , the Friedmann equations yield the time evolution and geometry of the universe as a function of the fluid density.
[1]: 117 The formula above is known as the Langevin paramagnetic equation. Pierre Curie found an approximation to this law that applies to the relatively high temperatures and low magnetic fields used in his experiments. As temperature increases and magnetic field decreases, the argument of the hyperbolic tangent decreases. In the Curie regime,