enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Direct sum - Wikipedia

    en.wikipedia.org/wiki/Direct_sum

    An element in the direct product is an infinite sequence, such as (1,2,3,...) but in the direct sum, there is a requirement that all but finitely many coordinates be zero, so the sequence (1,2,3,...) would be an element of the direct product but not of the direct sum, while (1,2,0,0,0,...) would be an element of both.

  3. Direct sum of modules - Wikipedia

    en.wikipedia.org/wiki/Direct_sum_of_modules

    The direct sum is a submodule of the direct product of the modules M i (Bourbaki 1989, §II.1.7). The direct product is the set of all functions α from I to the disjoint union of the modules M i with α(i)∈M i, but not necessarily vanishing for all but finitely many i. If the index set I is finite, then the direct sum and the direct product ...

  4. Direct sum of groups - Wikipedia

    en.wikipedia.org/wiki/Direct_sum_of_groups

    The group operation in the external direct sum is pointwise multiplication, as in the usual direct product. This subset does indeed form a group, and for a finite set of groups {H i} the external direct sum is equal to the direct product. If G = ΣH i, then G is isomorphic to Σ E {H i}. Thus, in a sense, the direct sum is an "internal ...

  5. Direct product - Wikipedia

    en.wikipedia.org/wiki/Direct_product

    The direct sum and direct product are not isomorphic for infinite indices, where the elements of a direct sum are zero for all but for a finite number of entries. They are dual in the sense of category theory : the direct sum is the coproduct , while the direct product is the product.

  6. Direct product of groups - Wikipedia

    en.wikipedia.org/wiki/Direct_product_of_groups

    Unlike a finite direct product, the infinite direct product Π i∈I G i is not generated by the elements of the isomorphic subgroups { G i } i∈I. Instead, these subgroups generate a subgroup of the direct product known as the infinite direct sum, which consists of all elements that have only finitely many non-identity components.

  7. Coproduct - Wikipedia

    en.wikipedia.org/wiki/Coproduct

    For example, the coproduct in the category of groups, called the free product, is quite complicated. On the other hand, in the category of abelian groups (and equally for vector spaces ), the coproduct, called the direct sum , consists of the elements of the direct product which have only finitely many nonzero terms.

  8. Complemented subspace - Wikipedia

    en.wikipedia.org/wiki/Complemented_subspace

    The vector space is said to be the algebraic direct sum (or direct sum in the category of vector spaces) when any of the following equivalent conditions are satisfied: The addition map S : M × N → X {\\displaystyle S:M\\times N\\to X} is a vector space isomorphism .

  9. Semisimple module - Wikipedia

    en.wikipedia.org/wiki/Semisimple_module

    M is the sum of its irreducible submodules. Every submodule of M is a direct summand: for every submodule N of M, there is a complement P such that M = N ⊕ P. For the proof of the equivalences, see Semisimple representation § Equivalent characterizations. The most basic example of a semisimple module is a module over a field, i.e., a vector ...