Search results
Results from the WOW.Com Content Network
The algorithm continues until a removed node (thus the node with the lowest f value out of all fringe nodes) is a goal node. [b] The f value of that goal is then also the cost of the shortest path, since h at the goal is zero in an admissible heuristic. The algorithm described so far only gives the length of the shortest path.
Another example of heuristic making an algorithm faster occurs in certain search problems. Initially, the heuristic tries every possibility at each step, like the full-space search algorithm. But it can stop the search at any time if the current possibility is already worse than the best solution already found.
The problem is NP-hard, so there is no known algorithm for solving this problem in polynomial time, and even small instances may require long computation time. It was also proven that the problem does not have an approximation algorithm running in polynomial time for any (constant) factor, unless P = NP. [2]
Divide and conquer divides the problem into multiple subproblems and so the conquer stage is more complex than decrease and conquer algorithms. [citation needed] An example of a decrease and conquer algorithm is the binary search algorithm. Search and enumeration Many problems (such as playing chess) can be modelled as problems on graphs.
For the following definitions, two examples will be used. The first is the problem of character recognition given an array of bits encoding a binary-valued image. The other example is the problem of finding an interval that will correctly classify points within the interval as positive and the points outside of the range as negative.
The DPLL algorithm enhances over the backtracking algorithm by the eager use of the following rules at each step: Unit propagation If a clause is a unit clause, i.e. it contains only a single unassigned literal, this clause can only be satisfied by assigning the necessary value to make this literal true. Thus, no choice is necessary.
In computer science, the Cocke–Younger–Kasami algorithm (alternatively called CYK, or CKY) is a parsing algorithm for context-free grammars published by Itiroo Sakai in 1961. [ 1 ] [ 2 ] The algorithm is named after some of its rediscoverers: John Cocke , Daniel Younger, Tadao Kasami , and Jacob T. Schwartz .
In the ABC algorithm, the first half of the swarm consists of employed bees, and the second half constitutes the onlooker bees. The number of employed bees or the onlooker bees is equal to the number of solutions in the swarm. The ABC generates a randomly distributed initial population of SN solutions (food sources), where SN denotes the swarm ...