Search results
Results from the WOW.Com Content Network
For ductile materials, the yield strength is typically distinct from the ultimate tensile strength, which is the load-bearing capacity for a given material. The ratio of yield strength to ultimate tensile strength is an important parameter for applications such steel for pipelines , and has been found to be proportional to the strain hardening ...
The ultimate tensile strength of a material is an intensive property; therefore its value does not depend on the size of the test specimen.However, depending on the material, it may be dependent on other factors, such as the preparation of the specimen, the presence or otherwise of surface defects, and the temperature of the test environment and material.
As shown later in this article, at the onset of yielding, the magnitude of the shear yield stress in pure shear is √3 times lower than the tensile yield stress in the case of simple tension. Thus, we have: = where is tensile yield strength of the material. If we set the von Mises stress equal to the yield strength and combine the above ...
Compressive strength is a limit state of compressive stress that leads to failure in a material in the manner of ductile failure (infinite theoretical yield) or brittle failure (rupture as the result of crack propagation, or sliding along a weak plane – see shear strength). Tensile strength or ultimate tensile strength is a limit state of ...
The ASTM D638 is among the most common tensile testing protocols. The ASTM D638 measures plastics tensile properties including ultimate tensile strength, yield strength, elongation and Poisson's ratio. The most common testing machine used in tensile testing is the universal testing machine.
A typical stress–strain curve for a brittle material will be linear. For some materials, such as concrete, tensile strength is negligible compared to the compressive strength and it is assumed zero for many engineering applications. Glass fibers have a tensile strength stronger than steel, but bulk
Tensile strengths of TRIP steels are in the range of 600-960 MPa. Martensitic steels are also high in C and Mn. These are fully quenched to martensite during processing. The martensite structure is then tempered back to the appropriate strength level, adding toughness to the steel. Tensile strengths for these steels range as high as 1500 MPa.
Specified Minimum Yield Strength (SMYS) means the specified minimum yield strength for steel pipe manufactured in accordance with a listed specification 1. This is a common term used in the oil and gas industry for steel pipe used under the jurisdiction of the United States Department of Transportation .