Search results
Results from the WOW.Com Content Network
Inertia is the natural tendency of objects in motion to stay in motion and objects at rest to stay at rest, unless a force causes the velocity to change. It is one of the fundamental principles in classical physics, and described by Isaac Newton in his first law of motion (also known as The Principle of Inertia). [1]
Newton's laws are often stated in terms of point or particle masses, that is, bodies whose volume is negligible. This is a reasonable approximation for real bodies when the motion of internal parts can be neglected, and when the separation between bodies is much larger than the size of each.
In modern particle physics, forces and the acceleration of particles are explained as a mathematical by-product of exchange of momentum-carrying gauge bosons. With the development of quantum field theory and general relativity , it was realized that force is a redundant concept arising from conservation of momentum ( 4-momentum in relativity ...
In physics, motion is when an object changes its position with respect to a reference point in a given time. Motion is mathematically described in terms of displacement , distance , velocity , acceleration , speed , and frame of reference to an observer, measuring the change in position of the body relative to that frame with a change in time.
Since the definition of acceleration is a = dv/dt, the second law can be written in the simplified and more familiar form: F = m a . {\displaystyle \mathbf {F} =m\mathbf {a} \,.} So long as the force acting on a particle is known, Newton's second law is sufficient to describe the motion of a particle.
In classical physics and special relativity, an inertial frame of reference (also called an inertial space or a Galilean reference frame) is a frame of reference in which objects exhibit inertia: they remain at rest or in uniform motion relative to the frame until acted upon by external forces. In such a frame, the laws of nature can be ...
It is the inertia of a rotating body with respect to its rotation. The moment of inertia plays much the same role in rotational dynamics as mass does in linear dynamics, describing the relationship between angular momentum and angular velocity, torque and angular acceleration, and several other quantities.
In this case, the moment of inertia of the mass in this system is a scalar known as the polar moment of inertia. The definition of the polar moment of inertia can be obtained by considering momentum, kinetic energy and Newton's laws for the planar movement of a rigid system of particles. [15] [18] [25] [26]