Search results
Results from the WOW.Com Content Network
In thermodynamics, an isobaric process is a type of thermodynamic process in which the pressure of the system stays constant: ΔP = 0. The heat transferred to the system does work, but also changes the internal energy (U) of the system. This article uses the physics sign convention for work, where positive work is work done by the system.
Thermodynamic work is one of the principal kinds of process by which a thermodynamic system can interact with and transfer energy to its surroundings. This results in externally measurable macroscopic forces on the system's surroundings, which can cause mechanical work, to lift a weight, for example, [1] or cause changes in electromagnetic, [2] [3] [4] or gravitational [5] variables.
The process does no pressure-volume work, since such work is defined by =, where P is pressure. The sign convention is such that positive work is performed by the system on the environment. If the process is not quasi-static, the work can perhaps be done in a volume constant thermodynamic process. [1]
Process simulation software describes processes in flow diagrams where unit operations are positioned and connected by product or educt streams. The software solves the mass and energy balance to find a stable operating point on specified parameters. The goal of a process simulation is to find optimal conditions for a process.
An example of this is quasi-static expansion of a mixture of hydrogen and oxygen gas, where the volume of the system changes so slowly that the pressure remains uniform throughout the system at each instant of time during the process. [2] Such an idealized process is a succession of physical equilibrium states, characterized by infinite ...
An example of a bubble cap tray that could be found inside of a stripping column. Stripping is mainly conducted in trayed towers (plate columns) and packed columns, and less often in spray towers, bubble columns, and centrifugal contactors. [2] Trayed towers consist of a vertical column with liquid flowing in the top and out the bottom.
The product is isolated from the mixture by the following work-up: [3] Synthesis of 4-methylcyclohexene with work-up step in red. A concentrated solution of sodium chloride in water, known as a brine solution, is added to the mixture and the layers are allowed to separate. The brine is used to remove any acid or water from the organic layer.
The following equation is an example, where M represents the given metal: MCO 3 → MO + CO 2. A specific example is that involving calcium carbonate: CaCO 3 → CaO + CO 2. Metal chlorates also decompose when heated. In this type of decomposition reaction, a metal chloride and oxygen gas are the products. Here, again, M represents the metal: