enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Straightedge and compass construction - Wikipedia

    en.wikipedia.org/wiki/Straightedge_and_compass...

    Using a markable ruler, regular polygons with solid constructions, like the heptagon, are constructible; and John H. Conway and Richard K. Guy give constructions for several of them. [20] The neusis construction is more powerful than a conic drawing tool, as one can construct complex numbers that do not have solid constructions.

  3. Geometric Constructions - Wikipedia

    en.wikipedia.org/wiki/Geometric_Constructions

    Martin originally intended his book to be a graduate-level textbook for students planning to become mathematics teachers. [2] However, as well as this use, it can also be read by anyone who is interested in the history of geometry and has an undergraduate-level background in abstract algebra, or used as a reference work on the topic of geometric constructions.

  4. Lists of shapes - Wikipedia

    en.wikipedia.org/wiki/Lists_of_shapes

    Lists of shapes cover different types of geometric shape and related topics. They include mathematics topics and other lists of shapes, such as shapes used by drawing or teaching tools. They include mathematics topics and other lists of shapes, such as shapes used by drawing or teaching tools.

  5. Heptadecagon - Wikipedia

    en.wikipedia.org/wiki/Heptadecagon

    The following construction is a variation of H. W. Richmond's construction. The differences to the original: The circle k 2 determines the point H instead of the bisector w 3. The circle k 4 around the point G' (reflection of the point G at m) yields the point N, which is no longer so close to M, for the construction of the tangent.

  6. Squaring the circle - Wikipedia

    en.wikipedia.org/wiki/Squaring_the_circle

    The more general goal of carrying out all geometric constructions using only a compass and straightedge has often been attributed to Oenopides, but the evidence for this is circumstantial. [ 9 ] The problem of finding the area under an arbitrary curve, now known as integration in calculus , or quadrature in numerical analysis , was known as ...

  7. Pythagoras tree (fractal) - Wikipedia

    en.wikipedia.org/wiki/Pythagoras_tree_(fractal)

    Iteration n in the construction adds 2 n squares of area , for a total area of 1. Thus the area of the tree might seem to grow without bound in the limit as n → ∞. However, some of the squares overlap starting at the order 5 iteration, and the tree actually has a finite area because it fits inside a 6×4 box.

  8. Geometric drawing - Wikipedia

    en.wikipedia.org/wiki/Geometric_drawing

    Geometric drawing made with ruler and compass. Geometric drawing consists of a set of processes for constructing geometric shapes and solving problems with the use of a ruler without graduation and the compass (drawing tool). [1] [2] Modernly, such studies can be done with the aid of software, which simulates the strokes performed by these ...

  9. Poncelet–Steiner theorem - Wikipedia

    en.wikipedia.org/wiki/Poncelet–Steiner_theorem

    To draw the parallel (h) to a diameter g through any given point P. Chose auxiliary point C anywhere on the straight line through B and P outside of BP. (Steiner) In the branch of mathematics known as Euclidean geometry, the Poncelet–Steiner theorem is one of several results concerning compass and straightedge constructions having additional restrictions imposed on the traditional rules.