Search results
Results from the WOW.Com Content Network
A graphical or bar scale. A map would also usually give its scale numerically ("1:50,000", for instance, means that one cm on the map represents 50,000cm of real space, which is 500 meters) A bar scale with the nominal scale expressed as "1:600 000", meaning 1 cm on the map corresponds to 600,000 cm=6 km on the ground.
Geographical distance or geodetic distance is the distance measured along the surface of the Earth, or the shortest arch length. The formulae in this article calculate distances between points which are defined by geographical coordinates in terms of latitude and longitude. This distance is an element in solving the second (inverse) geodetic ...
On large scale maps and charts, those covering a small area, and engineering and architectural drawings, the linear scale can be very simple, a line marked at intervals to show the distance on the earth or object which the distance on the scale represents. A person using the map can use a pair of dividers (or, less precisely, two fingers) to ...
Many maps are drawn to a scale expressed as a ratio, such as 1:10,000, which means that 1 unit of measurement on the map corresponds to 10,000 of that same unit on the ground. The scale statement can be accurate when the region mapped is small enough for the curvature of the Earth to be neglected, such as a city map .
The distance between any two points on the real line is the absolute value of the numerical difference of their coordinates, their absolute difference.Thus if and are two points on the real line, then the distance between them is given by: [1]
With one exception (magnetic declination), they all depend on a common principle, which is to determine the time for an event or measurement and to compare it with the time at a different location. Longitude, being up to 180° east or west of a prime meridian , is mathematically related to time differences up to 12 hours by a factor of 15.
Computer stereo vision and optical 3D measuring systems use this principle to determine the spatial dimensions and the geometry of an item. [2] Basically, the configuration consists of two sensors observing the item. One of the sensors is typically a digital camera device, and the other one can also be a camera or a light projector.
The haversine formula determines the great-circle distance between two points on a sphere given their longitudes and latitudes. Important in navigation , it is a special case of a more general formula in spherical trigonometry , the law of haversines , that relates the sides and angles of spherical triangles.