enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Jiles–Atherton model - Wikipedia

    en.wikipedia.org/wiki/Jiles–Atherton_model

    This is one of the most popular models of magnetic hysteresis. Its main advantage is the fact that this model enables connection with physical parameters of the magnetic material. [2] Jiles–Atherton model enables calculation of minor and major hysteresis loops. [1] The original Jiles–Atherton model is suitable only for isotropic materials. [1]

  3. Bouc–Wen model of hysteresis - Wikipedia

    en.wikipedia.org/wiki/Bouc–Wen_model_of_hysteresis

    In structural engineering, the Bouc–Wen model of hysteresis is a hysteretic model typically employed to describe non-linear hysteretic systems. It was introduced by Robert Bouc [1] [2] and extended by Yi-Kwei Wen, [3] who demonstrated its versatility by producing a variety of hysteretic patterns. This model is able to capture, in analytical ...

  4. Hysteresis - Wikipedia

    en.wikipedia.org/wiki/Hysteresis

    Hysteretic models are mathematical models capable of simulating complex nonlinear behavior (hysteresis) characterizing mechanical systems and materials used in different fields of engineering, such as aerospace, civil, and mechanical engineering. Some examples of mechanical systems and materials having hysteretic behavior are:

  5. Preisach model of hysteresis - Wikipedia

    en.wikipedia.org/wiki/Preisach_model_of_hysteresis

    Mathematically similar models seem to have been independently developed in other fields of science and engineering. One notable example is the model of capillary hysteresis in porous materials developed by Everett and co-workers. Since then, following the work of people like M. Krasnoselkii, A. Pokrovskii, A. Visintin, and I.D. Mayergoyz, the ...

  6. Bean's critical state model - Wikipedia

    en.wikipedia.org/wiki/Bean's_critical_state_model

    Calculated magnetization curve for a superconducting slab, based on Bean's model. The superconducting slab is initially at H = 0. Increasing H to critical field H* causes the blue curve; dropping H back to 0 and reversing direction to increase it to -H* causes the green curve; dropping H back to 0 again and increase H to H* causes the orange curve.

  7. Bang–bang control - Wikipedia

    en.wikipedia.org/wiki/Bang–bang_control

    In control theory, a bang–bang controller (hysteresis, 2 step or on–off controller), is a feedback controller that switches abruptly between two states. These controllers may be realized in terms of any element that provides hysteresis. They are often used to control a plant that accepts a binary input, for example a furnace that is either ...

  8. Hysteresivity - Wikipedia

    en.wikipedia.org/wiki/Hysteresivity

    Hysteresivity derives from “hysteresis”, meaning “lag”. It is the tendency to react slowly to an outside force, or to not return completely to its original state. Whereas the area within a hysteresis loop represents energy dissipated to heat and is an extensive quantity with units of energy, the hysteresivity represents the fraction of the elastic energy that is lost to heat, and is an ...

  9. Novak–Tyson model - Wikipedia

    en.wikipedia.org/wiki/Novak–Tyson_model

    The model proposes a complex set of feedback relationships that are mathematically defined by a series of rate constants and ordinary differential equations. It employs concepts seen in the previous models such as stoichiometric binding of Cdc2 and cyclin B, positive feedback loops through Cdc25 and Wee1 , and delayed activation by MPF of the ...