Search results
Results from the WOW.Com Content Network
The regular dodecahedron is a polyhedron with twelve pentagonal faces, thirty edges, and twenty vertices. [1] It is one of the Platonic solids, a set of polyhedrons in which the faces are regular polygons that are congruent and the same number of faces meet at a vertex. [2]
The concave equilateral dodecahedron, called an endo-dodecahedron. [clarification needed] A cube can be divided into a pyritohedron by bisecting all the edges, and faces in alternate directions. A regular dodecahedron is an intermediate case with equal edge lengths. A rhombic dodecahedron is a degenerate case with the 6 crossedges reduced to ...
symbol Vertex/Face configuration exact dihedral angle (radians) dihedral angle – exact in bold, ... Rhombic dodecahedron (Dual of cuboctahedron) — V(3.4.3.4)
The blue vertices lie at (± 1 / ϕ , 0, ±ϕ) and form a rectangle on the xz-plane. (The red, green and blue coordinate triples are circular permutations of each other.) The distance between adjacent vertices is 2 / ϕ , and the distance from the origin to any vertex is √ 3. ϕ = 1 + √ 5 / 2 is the golden ratio.
The dodecahedron is a regular polyhedron with Schläfli symbol {5,3}, having 3 pentagons around each vertex.. In geometry, the Schläfli symbol is a notation of the form {,,,...} that defines regular polytopes and tessellations.
In the mathematical field of graph theory, a rhombicosidodecahedral graph is the graph of vertices and edges of the rhombicosidodecahedron, one of the Archimedean solids. It has 60 vertices and 120 edges, and is a quartic graph Archimedean graph. [5] Square centered Schlegel diagram
Each dodecahedral cell of the 120-cell is diminished by removal of 4 of its 20 vertices, creating an irregular 16-point polyhedron called the tetrahedrally diminished dodecahedron because the 4 vertices removed formed a tetrahedron inscribed in the dodecahedron. Since the vertex figure of the dodecahedron is the triangle, each truncated vertex ...
The icosahedron and dodecahedron are dual to each other. The small stellated dodecahedron and great dodecahedron are dual to each other. The great stellated dodecahedron and great icosahedron are dual to each other. The Schläfli symbol of the dual is just the original written backwards, for example the dual of {5, 3} is {3, 5}.