enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Regular dodecahedron - Wikipedia

    en.wikipedia.org/wiki/Regular_dodecahedron

    The regular dodecahedron is a polyhedron with twelve pentagonal faces, thirty edges, and twenty vertices. [1] It is one of the Platonic solids, a set of polyhedrons in which the faces are regular polygons that are congruent and the same number of faces meet at a vertex. [2]

  3. Dodecahedron - Wikipedia

    en.wikipedia.org/wiki/Dodecahedron

    A tetartoid (also tetragonal pentagonal dodecahedron, pentagon-tritetrahedron, and tetrahedric pentagon dodecahedron) is a dodecahedron with chiral tetrahedral symmetry (T). Like the regular dodecahedron , it has twelve identical pentagonal faces, with three meeting in each of the 20 vertices.

  4. Rhombicosidodecahedron - Wikipedia

    en.wikipedia.org/wiki/Rhombicosidodecahedron

    The rhombicosidodecahedron shares its vertex arrangement with three nonconvex uniform polyhedra: the small stellated truncated dodecahedron, the small dodecicosidodecahedron (having the triangular and pentagonal faces in common), and the small rhombidodecahedron (having the square faces in common).

  5. Rhombic dodecahedron - Wikipedia

    en.wikipedia.org/wiki/Rhombic_dodecahedron

    In geometry, the rhombic dodecahedron is a convex polyhedron with 12 congruent rhombic faces. It has 24 edges, and 14 vertices of 2 types. As a Catalan solid, it is the dual polyhedron of the cuboctahedron. As a parallelohedron, the rhombic dodecahedron can be used to tesselate its copies in space creating a rhombic dodecahedral honeycomb.

  6. Table of polyhedron dihedral angles - Wikipedia

    en.wikipedia.org/wiki/Table_of_polyhedron...

    Picture Name Schläfli symbol Vertex/Face configuration exact dihedral angle (radians) dihedral angle – exact in bold, else approximate (degrees) Platonic solids (regular convex)

  7. Icosidodecahedron - Wikipedia

    en.wikipedia.org/wiki/Icosidodecahedron

    Six of these are the equatorial decagons to a pair of opposite vertices, and these six form the wireframe figure of an icosidodecahedron. If a 600-cell is stereographically projected to 3-space about any vertex and all points are normalised, the geodesics upon which edges fall comprise the icosidodecahedron's barycentric subdivision .

  8. 120-cell - Wikipedia

    en.wikipedia.org/wiki/120-cell

    Each dodecahedral cell of the 120-cell is diminished by removal of 4 of its 20 vertices, creating an irregular 16-point polyhedron called the tetrahedrally diminished dodecahedron because the 4 vertices removed formed a tetrahedron inscribed in the dodecahedron. Since the vertex figure of the dodecahedron is the triangle, each truncated vertex ...

  9. Pentakis dodecahedron - Wikipedia

    en.wikipedia.org/wiki/Pentakis_dodecahedron

    Let be the golden ratio.The 12 points given by (,,) and cyclic permutations of these coordinates are the vertices of a regular icosahedron.Its dual regular dodecahedron, whose edges intersect those of the icosahedron at right angles, has as vertices the points (,,) together with the points (, /,) and cyclic permutations of these coordinates.