Search results
Results from the WOW.Com Content Network
The wind imparts a torque on the wind turbine, thrust is a necessary by-product of torque. Newtonian physics dictates that for every action there is an equal and opposite reaction. If the wind imparts torque on the blades, then the blades must be imparting torque on the wind.
The power coefficient, , expresses what fraction of the power in the wind is being extracted by the wind turbine. It is generally assumed to be a function of both tip-speed ratio and pitch angle. Below is a plot of the variation of the power coefficient with variations in the tip-speed ratio when the pitch is held constant:
An example of a wind turbine, this 3 bladed turbine is the classic design of modern wind turbines Wind turbine components : 1-Foundation, 2-Connection to the electric grid, 3-Tower, 4-Access ladder, 5-Wind orientation control (Yaw control), 6-Nacelle, 7-Generator, 8-Anemometer, 9-Electric or Mechanical Brake, 10-Gearbox, 11-Rotor blade, 12-Blade pitch control, 13-Rotor hub
The power coefficient is a representation of how much of the available power in the wind is captured by the wind turbine and can be looked up in the graph above. The torque, Q {\displaystyle Q} , on the rotor shaft is given by the ratio of the power extracted to the rotor speed:
The drivetrain of a wind turbine comprises the hub, the low speed shaft, the gearbox, the high speed shaft, and the generator. The torque at the hub is strongly influenced by the rotor dynamics. The instantaneous hub torque is found by summing all the torques from all the blades of the wind turbine at any instant in time.
The necessary yawing torque was created by means of animal power, human power or even wind power (implementation of an auxiliary rotor known as fantail). Vertical-axis wind turbines (VAWTs) do not need a yaw system since their vertical rotors can face the wind from any direction and only their self rotation gives the blades a clear direction of ...
Whereas the streamtube area is reduced by a propeller, it is expanded by a wind turbine. For either application, a highly simplified but useful approximation is the Rankine–Froude "momentum" or "actuator disk" model (1865, [1] 1889 [2]). This article explains the application of the "Betz limit" to the efficiency of a ground-based wind turbine.
When rotor power or torque coefficient is assumed constant, the weighing function is: = and the corresponding weighted solidity ratio is known as the power or torque-weighted solidity ratio. This solidity ratio is analogous to the activity factor used in propeller design and is also used in wind turbine analysis.