enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Chlorine - Wikipedia

    en.wikipedia.org/wiki/Chlorine

    Corresponding to periodic trends, it is intermediate in electronegativity between fluorine and bromine (F: 3.98, Cl: 3.16, Br: 2.96, I: 2.66), and is less reactive than fluorine and more reactive than bromine. It is also a weaker oxidising agent than fluorine, but a stronger one than bromine.

  3. Bromine compounds - Wikipedia

    en.wikipedia.org/wiki/Bromine_compounds

    Bond energies to bromine tend to be lower than those to chlorine but higher than those to iodine, and bromine is a weaker oxidising agent than chlorine but a stronger one than iodine. This can be seen from the standard electrode potentials of the X 2 /X − couples (F, +2.866 V; Cl, +1.395 V; Br, +1.087 V; I, +0.615 V; At, approximately +0.3 V).

  4. Disinfection by-product - Wikipedia

    en.wikipedia.org/wiki/Disinfection_by-product

    In addition to being highly influenced by the types of organic and inorganic matter in the source water, the different species and concentrations of DBPs vary according to the type of disinfectant used, the dose of disinfectant, the concentration of natural organic matter and bromide/iodide, the time since dosing (i.e. water age), temperature ...

  5. Chlorine production - Wikipedia

    en.wikipedia.org/wiki/Chlorine_production

    Chlorine can be manufactured by the electrolysis of a sodium chloride solution , which is known as the Chloralkali process. The production of chlorine results in the co-products caustic soda (sodium hydroxide, NaOH) and hydrogen gas (H 2). These two products, as well as chlorine itself, are highly reactive.

  6. Water purification - Wikipedia

    en.wikipedia.org/wiki/Water_purification

    However, chlorine in water is over three times more effective as a disinfectant against Escherichia coli than an equivalent concentration of bromine, and over six times more effective than an equivalent concentration of iodine. [14] Iodine is commonly used for portable water purification, and bromine is common as a swimming pool disinfectant.

  7. Bromine - Wikipedia

    en.wikipedia.org/wiki/Bromine

    Bond energies to bromine tend to be lower than those to chlorine but higher than those to iodine, and bromine is a weaker oxidising agent than chlorine but a stronger one than iodine. This can be seen from the standard electrode potentials of the X 2 /X − couples (F, +2.866 V; Cl, +1.395 V; Br, +1.087 V; I, +0.615 V; At, approximately +0.3 V).

  8. Reactivity series - Wikipedia

    en.wikipedia.org/wiki/Reactivity_series

    The most reactive metals, such as sodium, will react with cold water to produce hydrogen and the metal hydroxide: 2 Na (s) + 2 H 2 O (l) →2 NaOH (aq) + H 2 (g) Metals in the middle of the reactivity series, such as iron , will react with acids such as sulfuric acid (but not water at normal temperatures) to give hydrogen and a metal salt ...

  9. Chlorine-releasing compounds - Wikipedia

    en.wikipedia.org/wiki/Chlorine-releasing_compounds

    Chlorine-releasing compounds, also known as chlorine base compounds, is jargon to describe certain chlorine-containing substances that are used as disinfectants and bleaches. They include the following chemicals: sodium hypochlorite (active agent in bleach ), chloramine , halazone , and sodium dichloroisocyanurate . [ 2 ]