enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Chlorine - Wikipedia

    en.wikipedia.org/wiki/Chlorine

    Corresponding to periodic trends, it is intermediate in electronegativity between fluorine and bromine (F: 3.98, Cl: 3.16, Br: 2.96, I: 2.66), and is less reactive than fluorine and more reactive than bromine. It is also a weaker oxidising agent than fluorine, but a stronger one than bromine.

  3. Reactivity–selectivity principle - Wikipedia

    en.wikipedia.org/wiki/Reactivity–selectivity...

    Whereas the relatively unreactive bromine reacts with 2-methylbutane predominantly to 2-bromo-2-methylbutane, the reaction with much more reactive chlorine results in a mixture of all four regioisomers. Another example of RSP can be found in the selectivity of the reaction of certain carbocations with azides and water.

  4. Bromine compounds - Wikipedia

    en.wikipedia.org/wiki/Bromine_compounds

    Bond energies to bromine tend to be lower than those to chlorine but higher than those to iodine, and bromine is a weaker oxidising agent than chlorine but a stronger one than iodine. This can be seen from the standard electrode potentials of the X 2 /X − couples (F, +2.866 V; Cl, +1.395 V; Br, +1.087 V; I, +0.615 V; At, approximately +0.3 V).

  5. Reactivity series - Wikipedia

    en.wikipedia.org/wiki/Reactivity_series

    The most reactive metals, such as sodium, will react with cold water to produce hydrogen and the metal hydroxide: 2 Na (s) + 2 H 2 O (l) →2 NaOH (aq) + H 2 (g) Metals in the middle of the reactivity series, such as iron , will react with acids such as sulfuric acid (but not water at normal temperatures) to give hydrogen and a metal salt ...

  6. Oxidizing agent - Wikipedia

    en.wikipedia.org/wiki/Oxidizing_agent

    The international pictogram for oxidizing chemicals. Dangerous goods label for oxidizing agents. An oxidizing agent (also known as an oxidant, oxidizer, electron recipient, or electron acceptor) is a substance in a redox chemical reaction that gains or "accepts"/"receives" an electron from a reducing agent (called the reductant, reducer, or electron donor).

  7. Bromine - Wikipedia

    en.wikipedia.org/wiki/Bromine

    Bond energies to bromine tend to be lower than those to chlorine but higher than those to iodine, and bromine is a weaker oxidising agent than chlorine but a stronger one than iodine. This can be seen from the standard electrode potentials of the X 2 /X − couples (F, +2.866 V; Cl, +1.395 V; Br, +1.087 V; I, +0.615 V; At, approximately +0.3 V).

  8. Chemoselectivity - Wikipedia

    en.wikipedia.org/wiki/Chemoselectivity

    The carbon-bromine bond is more reactive than the carbon-fluorine bond. If a molecule has several potential reactive sites, the reaction will occur in the most reactive one. When comparing carbon-halogen bonds, lighter halogens such as fluorine and chlorine have a better orbital overlap with carbon, which makes the bond stronger. [4]

  9. Halogen - Wikipedia

    en.wikipedia.org/wiki/Halogen

    The halogens (/ ˈ h æ l ə dʒ ə n, ˈ h eɪ-,-l oʊ-,-ˌ dʒ ɛ n / [1] [2] [3]) are a group in the periodic table consisting of six chemically related elements: fluorine (F), chlorine (Cl), bromine (Br), iodine (I), and the radioactive elements astatine (At) and tennessine (Ts), though some authors [4] would exclude tennessine as its chemistry is unknown and is theoretically expected to ...