enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Penman equation - Wikipedia

    en.wikipedia.org/wiki/Penman_equation

    The Penman equation describes evaporation (E) from an open water surface, and was developed by Howard Penman in 1948. Penman's equation requires daily mean temperature, wind speed, air pressure, and solar radiation to predict E. Simpler Hydrometeorological equations continue to be used where obtaining such data is impractical, to give comparable results within specific contexts, e.g. humid vs ...

  3. Water (data page) - Wikipedia

    en.wikipedia.org/wiki/Water_(data_page)

    In the following table, material data are given with a pressure of 611.7 Pa (equivalent to 0.006117 bar). Up to a temperature of 0.01 °C, the triple point of water, water normally exists as ice, except for supercooled water, for which one data point is tabulated here. At the triple point, ice can exist together with both liquid water and vapor.

  4. Equivalent temperature - Wikipedia

    en.wikipedia.org/wiki/Equivalent_temperature

    In atmospheric science, equivalent temperature is the temperature of air in a parcel from which all the water vapor has been extracted by an adiabatic process. Air contains water vapor that has been evaporated into it from liquid sources (lakes, sea, etc...). The energy needed to do that has been taken from the air.

  5. Vapour pressure of water - Wikipedia

    en.wikipedia.org/wiki/Vapour_pressure_of_water

    The boiling point of water is the temperature at which the saturated vapor pressure equals the ambient pressure. Water supercooled below its normal freezing point has a higher vapor pressure than that of ice at the same temperature and is, thus, unstable. Calculations of the (saturation) vapor pressure of water are commonly used in meteorology.

  6. Vapour-pressure deficit - Wikipedia

    en.wikipedia.org/wiki/Vapour-pressure_deficit

    In ecology, it is the difference between the water vapour pressure and the saturation water vapour pressure at a particular temperature. Unlike relative humidity , vapour-pressure deficit has a simple nearly straight-line relationship to the rate of evapotranspiration and other measures of evaporation.

  7. Maximum potential intensity - Wikipedia

    en.wikipedia.org/wiki/Maximum_potential_intensity

    At equilibrium, the rate of net energy production in the system must equal the rate of energy loss due to frictional dissipation at the surface, i.e. W i n = W o u t {\displaystyle W_{in}=W_{out}} The rate of energy loss per unit surface area from surface friction, W o u t {\displaystyle W_{out}} , is given by

  8. Bowen ratio - Wikipedia

    en.wikipedia.org/wiki/Bowen_ratio

    The Bowen ratio is calculated by the equation: =, where is sensible heating and is latent heating. In this context, when the magnitude of is less than one, a greater proportion of the available energy at the surface is passed to the atmosphere as latent heat than as sensible heat, and the converse is true for values of greater than one.

  9. Water vapor - Wikipedia

    en.wikipedia.org/wiki/Water_vapor

    The measurements range from under 30 to over 120 inches per year. Formulas can be used for calculating the rate of evaporation from a water surface such as a swimming pool. [5] [6] In some countries, the evaporation rate far exceeds the precipitation rate. Evaporative cooling is restricted by atmospheric conditions.